Refine
Document Type
- Article (11)
Language
- English (11)
Has Fulltext
- yes (11)
Is part of the Bibliography
- no (11)
Keywords
- Acute coronary syndrome (1)
- Angioplasty (1)
- Atrial fibrillation (1)
- Biomarkers (1)
- Cardiac troponin (1)
- Cardiovascular biology (1)
- Diagnostic markers (1)
- Diagnostic medicine (1)
- Fibroblast growth factor (1)
- Heart failure (1)
Institute
Bone marrow and plasma FGF‐23 in heart failure patients : novel insights into the heart–bone axis
(2019)
Aims: Fibroblast growth factor 23 (FGF‐23) is known to be elevated in patients with congestive heart failure (CHF). As FGF‐23 is expressed in the bone but can also be expressed in the myocardium, the origin of serum FGF‐23 in CHF remains unclear. It is also unclear if FGF‐23 expressed in the bone is associated with outcome in CHF. The aim of the present study was to investigate FGF‐23 levels measured in bone marrow plasma (FGF‐23‐BM) and in peripheral blood (FGF‐23‐P) in CHF patients to gain further insights into the heart–bone axis of FGF‐23 expression. We also investigated possible associations between FGF‐23‐BM as well as FGF‐23‐P and outcome in CHF patients.
Methods and results: We determined FGF‐23‐P and FGF‐23‐BM levels in 203 CHF patients (85% male, mean age 61.3 years) with a left ventricular ejection fraction (LVEF) ≤45% and compared them with those of 48 healthy controls (48% male, mean age 39.2 years). We investigated the association between FGF‐23‐BM and FGF‐23‐P with all‐cause mortality in CHF patients, 32 events, median follow‐up 1673 days, interquartile range [923, 1828]. FGF‐23‐P (median 60.3 vs. 22.0 RU/mL, P < 0.001) and FGF‐23‐BM (median 130.7 vs. 93.1 RU/mL, P < 0.001) levels were higher in CHF patients compared with healthy controls. FGF‐23‐BM levels were significantly higher than FGF‐23‐P levels in both CHF patients and in healthy controls (P < 0.001). FGF‐23‐P and FGF‐23‐BM correlated significantly with LVEF (r = −0.37 and r = −0.33, respectively), N terminal pro brain natriuretic peptide levels (r = 0.57 and r = 0.6, respectively), New York Heart Association status (r = 0.28 and r = 0.25, respectively), and estimated glomerular filtration rate (r = −0.43 and r = −0.41, respectively) (P for all <0.001) and were independently associated with all‐cause mortality in CHF patients after adjustment for LVEF, estimated glomerular filtration rate, New York Heart Association status, and N terminal pro brain natriuretic peptide, hazard ratio 2.71 [confidence interval: 1.18–6.20], P = 0.018, and hazard ratio 2.80 [confidence interval: 1.19–6.57], P = 0.018, respectively.
Conclusions: In CHF patients, FGF‐23 is elevated in bone marrow plasma and is independently associated with heart failure severity and all‐cause mortality. The failing heart seems to interact via FGF‐23 within a heart–bone axis.
Improved risk stratification in prevention by use of a panel of selected circulating microRNAs
(2017)
Risk stratification is crucial in prevention. Circulating microRNAs have been proposed as biomarkers in cardiovascular disease. Here a miR panel consisting of miRs related to different cardiovascular pathophysiologies, was evaluated to predict outcome in the context of prevention. MiR-34a, miR-223, miR-378, miR-499 and miR-133 were determined from peripheral blood by qPCR and combined to a risk panel. As derivation cohort, 178 individuals of the DETECT study, and as validation cohort, 129 individuals of the SHIP study were used in a case-control approach. Overall mortality and cardiovascular events were outcome measures. The Framingham Risk Score(FRS) and the SCORE system were applied as risk classification systems. The identified miR panel was significantly associated with mortality given by a hazard ratio(HR) of 3.0 (95% (CI): 1.09–8.43; p = 0.034) and of 2.9 (95% CI: 1.32–6.33; p = 0.008) after adjusting for the FRS in the derivation cohort. In a validation cohort the miR-panel had a HR of 1.31 (95% CI: 1.03–1.66; p = 0.03) and of 1.29 (95% CI: 1.02–1.64; p = 0.03) in a FRS/SCORE adjusted-model. A FRS/SCORE risk model was significantly improved to predict mortality by the miR panel with continuous net reclassification index of 0.42/0.49 (p = 0.014/0.005). The present miR panel of 5 circulating miRs is able to improve risk stratification in prevention with respect to mortality beyond the FRS or SCORE.
Patients with risks of ischemic injury, e.g. during circulatory arrest in cardiac surgery, or after resuscitation are subjected to therapeutic hypothermia. For aortic surgery, the body is traditionally cooled down to 18 °C and then rewarmed to body temperature. The role of hypothermia and the subsequent rewarming process on leukocyte-endothelial interactions and expression of junctional-adhesion-molecules is not clarified yet. Thus, we investigated in an in-vitro model the influence of temperature modulation during activation and transendothelial migration of leukocytes through human endothelial cells. Additionally, we investigated the expression of JAMs in the rewarming phase. Exposure to low temperatures alone during transmigration scarcely affects leukocyte extravasation, whereas hypothermia during treatment and transendothelial migration improves leukocyte-endothelial interactions. Rewarming causes a significant up-regulation of transmigration with falling temperatures. JAM-A is significantly modulated during rewarming. Our data suggest that transendothelial migration of leukocytes is not only modulated by cell-activation itself. Activation temperatures and the rewarming process are essential. Continued hypothermia significantly inhibits transendothelial migration, whereas the rewarming process enhances transmigration strongly. The expression of JAMs, especially JAM-A, is strongly modulated during the rewarming process. Endothelial protection prior to warm reperfusion and mild hypothermic conditions reducing the difference between hypothermia and rewarming temperatures should be considered.
Copeptin is the C-terminal end of pre-provasopressin released equimolar to vasopressin into circulation and recently discussed as promising cardiovascular biomarker amendatory to established markers such as troponins. Vasopressin is a cytokine synthesized in the hypothalamus. A direct release of copeptin from the heart into the circulation is implied by data from a rat model showing a cardiac origin in hearts put under cardiovascular wall stress. Therefore, evaluation of a potential release of copeptin from the human heart in acute myocardial infarction (AMI) has been done.
Background: Treatment of patients presenting with possible acute myocardial infarction (AMI) is based on timely diagnosis and proper risk stratification aided by biomarkers. We aimed at evaluating the predictive value of GDF-15 in patients presenting with symptoms suggestive of AMI.
Methods: Consecutive patients presenting with suspected AMI were enrolled in three study centers. Cardiovascular events were assessed during a follow-up period of 6 months with a combined endpoint of death or MI.
Results: From the 1818 enrolled patients (m/f = 1208/610), 413 (22.7%) had an acute MI and 63 patients reached the combined endpoint. Patients with MI and patients with adverse outcome had higher GDF-15 levels compared with non-MI patients (967.1pg/mL vs. 692.2 pg/L, p<0.001) and with event-free patients (1660 pg/mL vs. 756.6 pg/L, p<0.001). GDF-15 levels were lower in patients with SYNTAX score ≤ 22 (797.3 pg/mL vs. 947.2 pg/L, p = 0.036). Increased GDF-15 levels on admission were associated with a hazard ratio of 2.1 for death or MI (95%CI: 1.67–2.65, p<0.001) in a model adjusted for age and sex and of 1.57 (1.13–2.19, p = 0.008) adjusted for the GRACE score variables. GDF-15 showed a relevant reclassification with regards to the GRACE score with an overall net reclassification index (NRI) of 12.5% and an integrated discrimination improvement (IDI) of 14.56% (p = 0.006).
Conclusion: GDF-15 is an independent predictor of future cardiovascular events in patients presenting with suspected MI. GDF-15 levels correlate with the severity of CAD and can identify and risk-stratify patients who need coronary revascularization.
The use of cardiac troponins (cTn) is the gold standard for diagnosing myocardial infarction. Independent of myocardial infarction (MI), however, sex, age and kidney function affect cTn levels. Here we developed a method to adjust cTnI levels for age, sex, and renal function, maintaining a unified cut-off value such as the 99th percentile. A total of 4587 individuals enrolled in a prospective longitudinal study were used to develop a model for adjustment of cTn. cTnI levels correlated with age and estimated glomerular filtration rate (eGFR) in males/females with rage = 0.436/0.518 and with reGFR = −0.142/−0.207. For adjustment, these variables served as covariates in a linear regression model with cTnI as dependent variable. This adjustment model was then applied to a real-world cohort of 1789 patients with suspected acute MI (AMI) (N = 407). Adjusting cTnI showed no relevant loss of diagnostic information, as evidenced by comparable areas under the receiver operator characteristic curves, to identify AMI in males and females for adjusted and unadjusted cTnI. In specific patients groups such as in elderly females, adjusting cTnI improved specificity for AMI compared with unadjusted cTnI. Specificity was also improved in patients with renal dysfunction by using the adjusted cTnI values. Thus, the adjustments improved the diagnostic ability of cTnI to identify AMI in elderly patients and in patients with renal dysfunction. Interpretation of cTnI values in complex emergency cases is facilitated by our method, which maintains a single diagnostic cut-off value in all patients.
Background: Common ECG criteria such as ST-segment changes are of limited value in patients with suspected acute myocardial infarction (AMI) and bundle branch block or wide QRS complex. A large proportion of these patients do not suffer from an AMI, whereas those with ST-elevation myocardial infarction (STEMI) equivalent AMI benefit from an aggressive treatment. Aim of the present study was to evaluate the diagnostic information of cardiac troponin I (cTnI) in hemodynamically stable patients with wide QRS complex and suspected AMI.
Methods: In 417 out of 1818 patients presenting consecutively between 01/2007 and 12/2008 in a prospective multicenter observational study with suspected AMI a prolonged QRS duration was observed. Of these, n = 117 showed significant obstructive coronary artery disease (CAD) used as diagnostic outcome variable. cTnI was determined at admission.
Results: Patients with significant CAD had higher cTnI levels compared to individuals without (median 250ng/L vs. 11ng/L; p<0.01). To identify patients needing a coronary intervention, cTnI yielded an area under the receiver operator characteristics curve of 0.849. Optimized cut-offs with respect to a sensitivity driven rule-out and specificity driven rule-in strategy were established (40ng/L/96ng/L). Application of the specificity optimized cut-off value led to a positive predictive value of 71% compared to 59% if using the 99th percentile cut-off. The sensitivity optimized cut-off value was associated with a negative predictive value of 93% compared to 89% provided by application of the 99th percentile threshold.
Conclusion: cTnI determined in hemodynamically stable patients with suspected AMI and wide QRS complex using optimized diagnostic thresholds improves rule-in and rule-out with respect to presence of a significant obstructive CAD.
Background: The introduction of modern troponin assays has facilitated diagnosis of acute myocardial infarction due to improved sensitivity with corresponding loss of specificity. Atrial fibrillation (AF) is associated with elevated levels of troponin. The aim of the present study was to evaluate the diagnostic performance of troponin I in patients with suspected acute coronary syndrome and chronic AF.
Methods: Contemporary sensitive troponin I was assayed in a derivation cohort of 90 patients with suspected acute coronary syndrome and chronic AF to establish diagnostic cut-offs. These thresholds were validated in an independent cohort of 314 patients with suspected myocardial infarction and AF upon presentation. Additionally, changes in troponin I concentration within 3 hours were used.
Results: In the derivation cohort, optimized thresholds with respect to a rule-out strategy with high sensitivity and a rule-in strategy with high specificity were established. In the validation cohort, application of the rule-out cut-off led to a negative predictive value of 97 %. The rule-in cut-off was associated with a positive predictive value of 88 % compared with 71 % if using the 99th percentile cut-off. In patients with troponin I levels above the specificity-optimized threshold, additional use of the 3-hour change in absolute/relative concentration resulted in a further improved positive predictive value of 96 %/100 %.
Conclusions: Troponin I concentration and the 3-hour change in its concentration provide valid diagnostic information in patients with suspected myocardial infarction and chronic AF. With regard to AF-associated elevation of troponin levels, application of diagnostic cut-offs other than the 99th percentile might be beneficial.
Aims: Balloon pulmonary angioplasty (BPA) is an interventional treatment modality for inoperable chronic thromboembolic pulmonary hypertension (CTEPH). Therapy monitoring, based on non-invasive biomarkers, is a clinical challenge. This post-hoc study aimed to assess dynamics of high-sensitivity cardiac troponin T (hs-cTnT) as a marker for myocardial damage and its relation to N-terminal pro-B-type natriuretic peptide (NT-proBNP) levels as a marker for cardiac wall stress.
Methods and results: This study included 51 consecutive patients who underwent BPA treatment and completed a 6-month follow-up (6-MFU) between 3/2014 and 3/2017. Biomarker measurement was performed consecutively prior to each BPA and at 6-MFU.
In total, the 51 patients underwent an average of 5 BPA procedures. The 6-month survival rate was 96.1%. The baseline (BL) meanPAP (39.5±12.1mmHg) and PVR (515.8±219.2dyn×sec×cm-5) decreased significantly within the 6-MFU (meanPAP: 32.6±12.6mmHg, P<0.001; PVR: 396.9±182.6dyn×sec×cm-5, P<0.001). At BL, the median hs-cTnT level was 11 (IQR 6–16) ng/L and the median NT-proBNP level was 820 (IQR 153–1872) ng/L. The levels of both biomarkers decreased steadily after every BPA, showing the first significant difference after the first procedure. Within the 6-MFU, hs-cTnT levels (7 [IQR 5–12] ng/L; P<0.001) and NT-proBNP levels (159 [IQR 84–464] ng/l; P<0.001) continued to decrease. The hs-cTnT levels correlated with the PVR (rrs = 0.42; p = 0.005), the meanPAP (rrs = 0.32; p = 0.029) and the NT-proBNP (rrs = 0.51; p<0.001) levels at BL.
Conclusion: Non-invasive biomarker measurement provides valuable evidence for the decreasing impairment of myocardial function and structure during BPA therapy. Changes in hs-cTNT levels are suggestive for a reduction in ongoing myocardial damage.
Background The endogenous amino acid homoarginine predicts mortality in cerebro‐ and cardiovascular disease. The objective was to explore whether homoarginine is associated with atrial fibrillation (AF) and outcome in patients with acute chest pain.
Methods and Results One thousand six hundred forty‐nine patients with acute chest pain were consecutively enrolled in this study, of whom 589 were diagnosed acute coronary syndrome (ACS). On admission, plasma concentrations of homoarginine as well as brain natriuretic peptide (BNP), and high‐sensitivity assayed troponin I (hsTnI) were determined along with electrocardiography (ECG) variables. During a median follow‐up of 183 days, 60 major adverse cardiovascular events (MACEs; 3.8%), including all‐cause death, myocardial infarction, or stroke, were registered in the overall study population and 43 MACEs (7.5%) in the ACS subgroup. Adjusted multivariable Cox regression analyses revealed that an increase of 1 SD of plasma log‐transformed homoarginine (0.37) was associated with a hazard reduction of 26% (hazard ratio [HR], 0.74; 95% CI, 0.57–0.96) for incident MACE and likewise of 35% (HR, 0.65; 95% CI, 0.49–0.88) in ACS patients. In Kaplan–Meier survival curves, homoarginine was predictive for patients with high‐sensitivity assayed troponin I (hsTnI) above 27 ng/L (P<0.05). Last, homoarginine was inversely associated with QTc duration (P<0.001) and prevalent AF (OR, 0.83; 95% CI, 0.71–0.95).
Conclusion Low plasma homoarginine was identified as a risk marker for incident MACEs in patients with acute chest pain, in particular, in those with elevated hsTnI. Impaired homoarginine was associated with prevalent AF. Further studies are needed to investigate the link to AF and evaluate homoarginine as a therapeutic option for these patients.