Refine
Document Type
- Article (3)
Language
- English (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Keywords
- dorsal root ganglia (2)
- spinal cord (2)
- Adenosine A1 receptor (1)
- In situ hybridization (1)
- Neuropathic pain (1)
- Pain behavior (1)
- Partial agonist (1)
- Patch-clamp (1)
- Rab27a (1)
- axon bifurcation (1)
Institute
Tissue injury and inflammation may result in chronic pain, a severe debilitating disease that is associated with great impairment of quality of life. An increasing body of evidence indicates that members of the Rab family of small GTPases contribute to pain processing; however, their specific functions remain poorly understood. Here, we found using immunofluorescence staining and in situ hybridization that the small GTPase Rab27a is highly expressed in sensory neurons and in the superficial dorsal horn of the spinal cord of mice. Rab27a mutant mice, which carry a single-nucleotide missense mutation of Rab27a leading to the expression of a nonfunctional protein, show reduced mechanical hyperalgesia and spontaneous pain behavior in inflammatory pain models, while their responses to acute noxious mechanical and thermal stimuli is not affected. Our study uncovers a previously unrecognized function of Rab27a in the processing of persistent inflammatory pain in mice.
Lack of efficacy of a partial adenosine A1 receptor agonist in neuropathic pain models in mice
(2021)
Previous studies suggest that adenosine A1 receptors (A1R) modulate the processing of pain. The aim of this study was to characterize the distribution of A1R in nociceptive tissues and to evaluate whether targeting A1R with the partial agonist capadenoson may reduce neuropathic pain in mice. The cellular distribution of A1R in dorsal root ganglia (DRG) and the spinal cord was analyzed using fluorescent in situ hybridization. In behavioral experiments, neuropathic pain was induced by spared nerve injury or intraperitoneal injection of paclitaxel, and tactile hypersensitivities were determined using a dynamic plantar aesthesiometer. Whole-cell patch-clamp recordings were performed to assess electrophysiological properties of dissociated DRG neurons. We found A1R to be expressed in populations of DRG neurons and dorsal horn neurons involved in the processing of pain. However, administration of capadenoson at established in vivo doses (0.03–1.0 mg/kg) did not alter mechanical hypersensitivity in the spared nerve injury and paclitaxel models of neuropathic pain, whereas the standard analgesic pregabalin significantly inhibited the pain behavior. Moreover, capadenoson failed to affect potassium currents in DRG neurons, in contrast to a full A1R agonist. Despite expression of A1R in nociceptive neurons, our data do not support the hypothesis that pharmacological intervention with partial A1R agonists might be a valuable approach for the treatment of neuropathic pain.
Cyclic GMP (cGMP) is a second messenger that regulates numerous physiological and pathophysiological processes. In recent years, more and more studies have uncovered multiple roles of cGMP signalling pathways in the somatosensory system. Accumulating evidence suggests that cGMP regulates different cellular processes from embryonic development through to adulthood. During embryonic development, a cGMP-dependent signalling cascade in the trunk sensory system is essential for axon bifurcation, a specific form of branching of somatosensory axons. In adulthood, various cGMP signalling pathways in distinct cell populations of sensory neurons and dorsal horn neurons in the spinal cord play an important role in the processing of pain and itch. Some of the involved enzymes might serve as a target for future therapies. In this review, we summarise the knowledge regarding cGMP-dependent signalling pathways in dorsal root ganglia and the spinal cord during embryonic development and adulthood, and the potential of targeting these pathways.
LINKED ARTICLES
This article is part of a themed issue on cGMP Signalling in Cell Growth and Survival. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.11/issuetoc