Refine
Document Type
- Article (2)
- Conference Proceeding (1)
Language
- English (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Keywords
- RNA PT (1)
- RNA modification (1)
- digestion artifact (1)
- helium-beam radiography (1)
- ion-beam therapy (1)
- mass spectrometry (1)
- nucleoside analysis (1)
- on imaging (1)
Institute
The Heidelberg Ion-Beam Therapy Centre (HIT) provides proton, helium, and carbon-ion beams with different energies and intensities for cancer treatment and oxygen-ion beams for experiments. For several experiments and possible future applications, such as helium ion beam radiography, a low-intensity ion beam monitor integrated into the dose delivery feedback system for the accelerator control is a necessary pre-requisite. The updated 2D prototype for this purpose consists of scintillating fibres with enhanced radiation hardness, silicon photomultipliers (SiPMs) to amplify the emitted light, and a dedicated front-end readout system (FERS) to process and record the generated signals. This setup was tested successfully on monitoring ion-beam position and profile horizontally and vertically, as well as the beam intensity, for all four ion types with energies from 50 to 430 MeV/u and intensities from 1E2 to 1E7 ions/s. Additionally, time-of-arrival (ToA) measurements on single ions have been successfully performed for a limited intensity range, allowing for ion tracking in a further update. This will reduce noise, and will also improve the accuracy and usability of ion radiography.
In this report, we perform structure validation of recently reported RNA phosphorothioate (PT) modifications, a new set of epitranscriptome marks found in bacteria and eukaryotes including humans. By comparing synthetic PT-containing diribonucleotides with native species in RNA hydrolysates by high-resolution mass spectrometry (MS), metabolic stable isotope labeling, and PT-specific iodine-desulfurization, we disprove the existence of PTs in RNA from E. coli, S. cerevisiae, human cell lines, and mouse brain. Furthermore, we discuss how an MS artifact led to the initial misidentification of 2′-O-methylated diribonucleotides as RNA phosphorothioates. To aid structure validation of new nucleic acid modifications, we present a detailed guideline for MS analysis of RNA hydrolysates, emphasizing how the chosen RNA hydrolysis protocol can be a decisive factor in discovering and quantifying RNA modifications in biological samples.
Purpose: A clinical implementation of ion-beam radiography (iRad) is envisaged to provide a method for on-couch verification of ion-beam treatment plans. The aim of this work is to introduce and evaluate a method for quantitative water-equivalent thickness (WET) measurements for a specific helium-ion imaging system for WETs that are relevant for imaging thicker body parts in the future.
Methods: Helium-beam radiographs (αRads) are measured at the Heidelberg Ion-beam Therapy Center with an initial beam energy of 239.5 MeV/u. An imaging system based on three pairs of thin silicon pixel detectors is used for ion path reconstruction and measuring the energy deposition (dE) of each particle behind the object to be imaged. The dE behind homogeneous plastic blocks is related to their well-known WETs between 280.6 and 312.6 mm with a calibration curve that is created by a fit to measured data points. The quality of the quantitative WET measurements is determined by the uncertainty of the measured WET of a single ion (single-ion WET precision) and the deviation of a measured WET value to the well-known WET (WET accuracy). Subsequently, the fitted calibration curve is applied to an energy deposition radiograph of a phantom with a complex geometry. The spatial resolution (modulation transfer function at 10 % —MTF10%) and WET accuracy (mean absolute percentage difference—MAPD) of the WET map are determined.
Results: In the optimal imaging WET-range from ∼280 to 300 mm, the fitted calibration curve reached a mean single-ion WET precision of 1.55
0.00%. Applying the calibration to an ion radiograph (iRad) of a more complex WET distribution, the spatial resolution was determined to be MTF10% = 0.49 0.03 lp/mm and the WET accuracy was assessed as MAPD to 0.21 %.
Conclusions: Using a beam energy of 239.5 MeV/u and the proposed calibration procedure, quantitative αRads of WETs between ∼280 and 300 mm can be measured and show high potential for clinical use. The proposed approach with the resulting image qualities encourages further investigation toward the clinical application of helium-beam radiography.