Refine
Document Type
- Article (12)
- Bachelor Thesis (1)
- Conference Proceeding (1)
- Doctoral Thesis (1)
Has Fulltext
- yes (15)
Is part of the Bibliography
- no (15)
Keywords
- Baryonic resonances (1)
- Freezeout (1)
- Heavy-ion reactions (1)
- Hyperons (1)
- Nucleus (1)
- Proton (1)
- Strangeness (1)
Institute
- Physik (15)
In April and May 2012 data on Au+Au collisions at beam energies of Ekin = 1.23A GeV were recorded with the High Acceptance Di-Electron Spectrometer, which is located at the GSI Helmholtz Center for Heavy Ion Research in Darmstadt, Germany. At this beam energy all hadrons containing strangeness are produced below their elementary production threshold. The required energy is not available in binary NN collisions but must be provided by the system e.g. through multi-particle interactions or medium effects like a modified in-medium potential (e.g. KN/ΛN potential). Thus, a high sensitivity to these medium effects is expected in the investigated system.
The baryon-dominated systems created in relativistic heavy-ion collisions (HIC) at SIS18 energies reach densities of about 2-3 times ground state density p0 and may be similar to the properties of matter expected in the inner core of neutron stars. It is in particular the behavior of hadrons containing strangeness, i.e. kaons and hyperons, and their potentials in the dense medium which may have severe implications on astrophysical objects and processes. As ab-initio calculations of quantum chromodynamics (QCD) cannot be performed rigorously on the lattice at finite baryo-chemical potentials due to the fermion sign problem, effective descriptions have to be used in order to model properties of dense systems and the involved particles. The only way to access the in-medium potential of strange hadrons above nuclear ground state density p0 is by comparing data from relativistic HIC to such effective microscopic models. Up to now, not much data on neutral kaons and Λ hyperons are available from heavy collision systems close to their NN production threshold. These two electromagnetically uncharged strange hadrons are in particular well suited to study their potential in a dense nucleon-dominated environment as their kinematic spectra are not affected by Coulomb interactions.
In dieser Arbeit wurden im Rahmen des HADES-Experimentes von 2007 Proton-Proton-Stöße bei einer kinetischen Energie von Tkin = 3.5GeV der Reaktion pp → ppw simuliert. Insbesondere wurde mittels einer Pluto-Simulation untersucht, welche Auswirkungen die Berücksichtigung möglicher Verteilungsfunktionen für cos(θω) und cos(θ pp), die neben 2 weiteren Parametern als voneinander unabhängige Observablen zur Beschreibung der Reaktion gewählt wurden, auf die Anzahl der simulierten Ereignisse Nsim innerhalb der Detektorakzeptanz des HADES haben könnte. Hierbei stammt die gewählte Winkelverteilung für die w-Produktion aus Messungen des nicht mehr existierenden DISTO-Spektrometers, das Proton-Proton-Stöße bei einer leicht geringeren Energie von Tkin = 2.85GeV durchgeführt hatte, während die Verteilung für die Proton-Proton-Paar-Ausrichtung auf einer Annahme basiert und vorläufig gewählt wurde. Unter Verwendung eines weiteren Modells, das den 3-Teilchen-Zerfall ω → π+π−π0 beschreibt, wurde ein theoretisches Modell von Lutz et al. [1] in die Simulation implementiert, dessen Auswirkung auf Nsim es ebenfalls zu untersuchen galt. Dieses erlaubt eine Reduzierung der Anzahl der Freiheitsgrade des Systems von 12 auf 4, was eine Akzeptanzkorrektur der Reaktion pp→ ppω ermöglicht.
Die Ergebnisse zeigten eine starke Abhängigkeit der Anzahl der simulierten Teilchen von der Proton-Proton-Ausrichtung, die zu einer Reduzierung der Ereignisanzahl von etwa 15% führt. Dies hat zur Folge, dass eine Bestimmung der Verteilungsfunktion für diese Observable absolut notwendig ist. Die Auswirkungen der w-Winkelverteilung beträgt etwa 4−9%. Ein Vergleich der Simulationsergebnisse mit und ohne Modell führte zu dem Ergebnis, dass eine geringe Änderung der Nsim von 1−2% zu Gunsten des Zerfallsmodells vorliegt. Eine Berücksichtigung in Simulationen, die der Untersuchung des betrachteten Zerfalls dienen, ist also keine Notwendigkeit.
In this letter we report the first multi-differential measurement of correlated pion-proton pairs from 2 billion Au+Au collisions at sNN=2.42 GeV collected with HADES. In this energy regime the population of Δ(1232) resonances plays an important role in the way energy is distributed between intrinsic excitation energy and kinetic energy of the hadrons in the fireball. The triple differential d3N/dMπ±pdpTdy distributions of correlated π±p pairs have been determined by subtracting the πp combinatorial background using an iterative method. The invariant-mass distributions in the Δ(1232) mass region show strong deviations from a Breit-Wigner function with vacuum width and mass. The yield of correlated pion-proton pairs exhibits a complex isospin, rapidity and transverse-momentum dependence. In the invariant mass range 1.1<Minv(GeV/c2)<1.4, the yield is found to be similar for π+p and π−p pairs, and to follow a power law 〈Apart〉α, where 〈Apart〉 is the mean number of participating nucleons. The exponent α depends strongly on the pair transverse momentum (pT) while its pT-integrated and charge-averaged value is α=1.5±0.08st±0.2sy.
n this paper we report on the investigation of baryonic resonance production in proton-proton collisions at the kinetic energies of 1.25 GeV and 3.5 GeV, based on data measured with HADES. Exclusive channels npπ+ and ppπ0 as well as ppe+e− were studied simultaneously in the framework of a one-boson exchange model. The resonance cross sections were determined from the one-pion channels for Δ(1232) and N(1440) (1.25 GeV) as well as further Δ and N* resonances up to 2 GeV/c2 for the 3.5 GeV data. The data at 1.25 GeV energy were also analysed within the framework of the partial wave analysis together with the set of several other measurements at lower energies. The obtained solutions provided the evolution of resonance production with the beam energy, showing a sizeable non-resonant contribution but with still dominating contribution of Δ(1232)P33. In the case of 3.5 GeV data, the study of the ppe+e− channel gave the insight on the Dalitz decays of the baryon resonances and, in particular, on the electromagnetic transition form-factors in the time-like region. We show that the assumption of a constant electromagnetic transition form-factors leads to underestimation of the yield in the dielectron invariant mass spectrum below the vector mesons pole. On the other hand, a comparison with various transport models shows the important role of intermediate ρ production, though with a large model dependency. The exclusive channels analysis done by the HADES collaboration provides new stringent restrictions on the parameterizations used in the models.
We present first data on sub-threshold production of Ks0 mesons and Λ hyperons in Au+Au collisions at sNN=2.4 GeV. We observe an universal 〈Apart〉 scaling of hadrons containing strangeness, independent of their corresponding production thresholds. Comparing the yields, their 〈Apart〉 scaling, and the shapes of the rapidity and the pt spectra to state-of-the-art transport model (UrQMD, HSD, IQMD) predictions, we find that none of them can simultaneously describe these observables with reasonable χ2 values.
The knowledge of baryonic resonance properties and production cross sections plays an important role for the extraction and understanding of medium modifications of mesons in hot and/or dense nuclear matter. We present and discuss systematics on dielectron and strangeness production obtained with HADES on p+p, p+A and A+A collisions in the few GeV energy regime with respect to these resonances.
his contribution aims to give a basic overview of the latest results regarding the production of resonances in different collision systems. The results were extracted from experimental data collected with HADES that is a multipurpose detector located at the GSI Helmholtzzentrum, Darmstadt. The main points discussed here are: the properties of the strange resonances Λ(1405) and Σ(1385), the role of Δ’s as a source of pions in the final state, the production dynamics reflected in form of differential cross sections, and the role of the ϕ meson as a source for K− particles.
We present the results of two-pion production in tagged quasi-free np collisions at a deutron incident beam energy of 1.25 GeV/c measured with the High-Acceptance Di-Electron Spectrometer (HADES) installed at GSI. The specific acceptance of HADES allowed for the first time to obtain high-precision data on π+π− and π−π0 production in np collisions in a region corresponding to large transverse momenta of the secondary particles. The obtained differential cross section data provide strong constraints on the production mechanisms and on the various baryon resonance contributions (∆∆, N(1440), N(1520), ∆(1600)). The invariant mass and angular distributions from the np → npπ+π −and np → ppπ−π0 reactions are compared with different theoretical model predictions.
The production of Σ0 baryons in the nuclear reaction p (3.5 GeV) + Nb (corresponding to sNN=3.18 GeV) is studied with the detector set-up HADES at GSI, Darmstadt. Σ0s were identified via the decay Σ0→Λγ with subsequent decays Λ→pπ− in coincidence with a e+e− pair from either external (γ→e+e−) or internal (Dalitz decay γ⁎→e+e−) gamma conversions. The differential Σ0 cross section integrated over the detector acceptance, i.e. the rapidity interval 0.5<y<1.1, has been extracted as ΔσΣ0=2.3±(0.2)stat±(−0.6+0.6)sys±(0.2)norm mb, yielding the inclusive production cross section in full phase space σΣ0total=5.8±(0.5)stat±(−1.4+1.4)sys±(0.6)norm±(1.7)extrapol mb by averaging over different extrapolation methods. The Λall/Σ0 ratio within the HADES acceptance is equal to 2.3±(0.2)stat±(−0.6+0.6)sys. The obtained rapidity and momentum distributions are compared to transport model calculations. The Σ0 yield agrees with the statistical model of particle production in nuclear reactions. Keywords: Hyperons, Strangeness, Proton, Nucleus.
We present data on charged kaons (K±) and ϕ mesons in Au(1.23A GeV)+Au collisions. It is the first simultaneous measurement of K− and ϕ mesons in central heavy-ion collisions below a kinetic beam energy of 10A GeV. The ϕ/K− multiplicity ratio is found to be surprisingly high with a value of 0.52±0.16 and shows no dependence on the centrality of the collision. Consequently, the different slopes of the K+ and K− transverse-mass spectra can be explained solely by feed-down, which substantially softens the spectra of K− mesons. Hence, in contrast to the commonly adapted argumentation in literature, the different slopes do not necessarily imply diverging freeze-out temperatures of K+ and K− mesons caused by different couplings to baryons.