Refine
Document Type
- Article (7)
Language
- English (7)
Has Fulltext
- yes (7)
Is part of the Bibliography
- no (7)
Keywords
- Accelerators & Beams (1)
- Accelerators & storage rings (1)
- Anionic boranes (1)
- Atomic & molecular beams (1)
- Atomic, Molecular & Optical (1)
- Beam loss (1)
- B−B bonds (1)
- B−H bonds (1)
- Charge-transfer collisions (1)
- Circular accelerators (1)
Institute
- Biochemie und Chemie (4)
- ELEMENTS (2)
- Physik (2)
- Biochemie, Chemie und Pharmazie (1)
The intriguing (μ-hydrido)diboranes(4) with their prominent pristine representative [B2H5]− have mainly been studied theoretically. We now describe the behavior of the planarized tetraaryl (μ-hydrido)diborane(4) anion [1H]− in cycloaddition reactions with the homologous series of heterocumulenes CO2, iPrNCO, and iPrNCNiPr. We show that a C=O bond of CO2 selectively activates the B−B bond of [1H]−, while the μ-H ligand is left untouched ([2H]−). The carbodiimide iPrNCNiPr, in contrast, neglects the B−B bond and rather adds the B-bonded H− ion to its central C atom to generate a formamidinate bridge across the B2 pair ([3]−). As a hybrid, the isocyanate iPrNCO combines the reactivity patterns of both its congeners and gives two products: one of them ([4H]−) is related to [2H]−, the other ([5]−) is an analog of [3]−. We finally propose a mechanistic scenario that rationalizes the individual reaction outcomes and combines them to a coherent picture of B–B vs. B–H bond activation.
Organoboranes are among the most versatile and widely used reagents in synthetic chemistry. A significant further expansion of their application spectrum would be achievable if boron-containing reactive intermediates capable of inserting into C–H bonds or performing nucleophilic substitution reactions were readily available. However, current progress in the field is still hampered by a lack of universal design concepts and mechanistic understanding. Herein we report that the doubly arylene-bridged diborane(6) 1H2 and its B[double bond, length as m-dash]B-bonded formal deprotonation product Li2[1] can activate the particularly inert C(sp3)–H bonds of added H3CLi and H3CCl, respectively. The first case involves the attack of [H3C]− on a Lewis-acidic boron center, whereas the second case follows a polarity-inverted pathway with nucleophilic attack of the B[double bond, length as m-dash]B double bond on H3CCl. Mechanistic details were elucidated by means of deuterium-labeled reagents, a radical clock, α,ω-dihaloalkane substrates, the experimental identification of key intermediates, and quantum-chemical calculations. It turned out that both systems, H3CLi/1H2 and H3CCl/Li2[1], ultimately funnel into the same reaction pathway, which likely proceeds past a borylene-type intermediate and requires the cooperative interaction of both boron atoms.
The tetraaryl μ‐hydridodiborane(4) anion [2H]− possesses nucleophilic B−B and B−H bonds. Treatment of K[2H] with the electrophilic 9‐H‐9‐borafluorene (HBFlu) furnishes the B3 cluster K[3], with a triangular boron core linked through two BHB two‐electron, three‐center bonds and one electron‐precise B−B bond, reminiscent of the prominent [B3H8]− anion. Upon heating or prolonged stirring at room temperature, K[3] rearranges to a slightly more stable isomer K[3 a]. The reaction of M[2H] (M+=Li+, K+) with MeI or Me3SiCl leads to equimolar amounts of 9‐R‐9‐borafluorene and HBFlu (R=Me or Me3Si). Thus, [2H]− behaves as a masked [:BFlu]− nucleophile. The HBFlu by‐product was used in situ to establish a tandem substitution‐hydroboration reaction: a 1:1 mixture of M[2H] and allyl bromide gave the 1,3‐propylene‐linked ditopic 9‐borafluorene 5 as sole product. M[2H] also participates in unprecedented [4+1] cycloadditions with dienes to furnish dialkyl diaryl spiroborates, M[R2BFlu].
Iodo(triphenyl)silane
(2019)
The molecular structure of the title compound, C18H15ISi, which crystallizes in the space group C2/c, does not exhibit any unusual features. Two weak C—H⋯π interactions may help to consolidate the packing. The present structure is not isostructural with the known Ph3SiX (X = F, Cl or Br) compounds.
We report the first measurement of low-energy proton-capture cross sections of 124Xe in a heavy-ion storage ring. 124Xe54+ ions of five different beam energies between 5.5 and 8 AMeV were stored to collide with a windowless hydrogen target. The 125Cs reaction products were directly detected. The interaction energies are located on the high energy tail of the Gamow window for hot, explosive scenarios such as supernovae and x-ray binaries. The results serve as an important test of predicted astrophysical reaction rates in this mass range. Good agreement in the prediction of the astrophysically important proton width at low energy is found, with only a 30% difference between measurement and theory. Larger deviations are found above the neutron emission threshold, where also neutron and γ widths significantly impact the cross sections. The newly established experimental method is a very powerful tool to investigate nuclear reactions on rare ion beams at low center-of-mass energies.
The electron-capture process was studied for Xe54+ colliding with H2 molecules at the internal gas target of the Experimental Storage Ring (ESR) at GSI, Darmstadt. Cross-section values for electron capture into excited projectile states were deduced from the observed emission cross section of Lyman radiation, being emitted by the hydrogenlike ions subsequent to the capture of a target electron. The ion beam energy range was varied between 5.5 and 30.9 MeV/u by applying the deceleration mode of the ESR. Thus, electron-capture data were recorded at the intermediate and, in particular, the low-collision-energy regime, well below the beam energy necessary to produce bare xenon ions. The obtained data are found to be in reasonable qualitative agreement with theoretical approaches, while a commonly applied empirical formula significantly overestimates the experimental findings.
Subvalent boron compounds contain boron atoms with oxidation numbers lower than +III. Over the last decades, the development of isolable derivatives has relied heavily on the use of specially designed ligands capable of stabilizing the electron‐rich boron centers electronically or through steric protection. Herein, we are exclusively reviewing anionic organo(hydro)boranes largely devoid of stabilizing ligands or heteroatom substituents. The restriction to these subvalent species is intended to minimize the risk of ligand artifacts being included when carving out the characteristic properties of the respective boron centers, such as nucleophilic or carbenoid behavior. The scope of this review encompasses triorganoborane radical monoanions ([·BR3]–) along with closed‐shell dianions ([:BR3]2–), boryl anions ([:BR2]–), as well as B–B single‐bonded diborane(6) dianions ([R3B–BR3]2–) and diborane(5) monoanions ([R2B–BR3]–), and finally B=B double‐bonded diborane(4) dianions ([R2B=BR2]2–). We are showing how these species are related to each other and comment on their bonding situations from an experimentalist's perspective.