Refine
Document Type
- Article (2)
- Doctoral Thesis (1)
Language
- English (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Keywords
- Cardiolipin (1)
- Cytochrom c (1)
- Cytochrom-bc1-Komplex (1)
- Protonentransfer (1)
- Superkomplex (1)
Institute
The cytochrome bc1 complex is a dimeric enzyme of the inner mitochondrial membrane that links electron transfer from ubiquinol to cytochrome c by a protonmotive Q cycle mechanism in which ubiquinol is oxidized at one center in the enzyme, referred to as center P, and ubiquinone is rereduced at a second center, referred to as center N. To better understand the mechanism of ubiquinol oxidation, we have examined catalytic activities and pre-steady-state reduction kinetics of yeast cytochrome bc1 complexes with mutations in cytochrome b that we expected would affect oxidation of ubiquinol. We mutated two residues thought to be involved in proton conduction linked to ubiquinol oxidation, Tyr132 and Glu272, and two residues proposed to be involved in docking ubiquinol into the center P pocket, Phe129 and Tyr279. Substitution of Phe129 by lysine or arginine yielded a respiration-deficient phenotype and lipid-dependent catalytic activity. Increased bypass reactions were detectable for both variants, with F129K showing the more severe effects. Substitution with lysine leads to a disturbed coordination of a b heme as deduced from changes in the midpoint potential and the EPR signature. Removal of the aromatic side chain in position Tyr279 lowers the catalytic activity accompanied by a low level of bypass reactions. Pre-steady-state kinetics of the enzymes modified at Glu272 and Tyr132 confirmed the importance of their functional groups for electron transfer. Altered center N kinetics and activation of ubiquinol oxidation by binding of cytochrome c in the Y132F and E272D enzymes indicate long range effects of these mutations.
The cytochrome bc1 complex or ubiquinol:cytochrome c oxidoreductase (QCR) catalyses electron transfer from ubiquinol to cytochrome c in respiration and photosynthesis coupled to a vectorial proton transport across the membrane, in which the enzyme resides. In both bacteria and eukaryotic organisms, QCR participates in supramolecular assembly of membrane proteins that comprise the respiratory or photosynthetic chain. In the present work, proton transfer pathways, substrate binding and the supramolecular assembly of the respiratory chain in yeast were probed by structure-based site-directed mutagenesis and characterization of the variants. Both active sites centre P, the place of quinol oxidation, and centre N, where quinone reduction takes place, lack direct access to the bulk solvent necessary for proton release and uptake. Based on the X-ray structure, proton transfer pathways were postulated. Analysis at centre P showed, that E272 and Y132 of cytochrome b are important for QCR catalysis as indicated by increased superoxide production and lowered Cyc1p reductase activity in these variants. Pre-steady state heme reduction kinetics in combination with stigmatellin resistance indicated that charge and length of the side chain at position 272 are crucial for efficient docking of the ISP to form the enzyme substrate complex and for electron bifurcation at centre P. Variants of Y312 and F129, both residues of cytochrome b, showed an increased Km indicating participation of these residues in coordination of ubiquinol or the possible intermediate semiquinone anion radical. F129 proved to be crucial for a functional Q-cycle as indicated by respiratory negative growth phenotype and a lowered H+/e- stoichiometry of F129 variants. At centre N, the postulated CL/K and E/R proton transfer pathways are located at opposite sites of the bound ubiquinone. Variants in the surface residues R218 (cytochrome b) and E52 (Qcr7) of the E/R pathway and E82 (Qcr7) of the CL/K pathway showed instability upon purification indicating an important role of these residues for QCR integrity. The slowed down centre N reduction kinetics in H85 (CL/K), R218 and N208 (both E/R) variant was attributed to a destabilised semiquinone anion consistent with the observed decreased sensitivity towards the site-specific inhibitor antimycin and an increased Km. Variants of residues of both pathway, E82Q and R218M, exhibited a decreased H+/e- stoichiometry indicating a crucial role of both residue for maintaining a working Q-cycle and supporting the proposed protonation of the substrate via the Cl/K and the E/R pathway. Long-range interaction between centre N and centre P were observed by altered reduction kinetics of the high potential chain and increased superoxide production in the centre N variants. The role of the cation-pi-interaction between F230 of Cyt1p and R19 of cytochrome c in binding of the redox carrier to QCR was analysed. In F230L hydrophobic interaction were partially lost as was deduced from the ionic strength dependence of Cyc1p reductase activity and Cycp1 binding, as detected by ionic strength sensitive Kd and Km for Cyc1p. The decreased enzymatic rate of F230W could be explained by a disturbed binding of Cyc1p to the variant enzyme. F230 may influence the heme mid point potential and thereby the electron transfer rate to Cyc1p. Reduction of Cobp via both centre P and centre N was disturbed suggesting an interaction between high and low potential chain. Supramolecular association between QCR and cytochrome c oxidase (COX) in yeast mitochondria was probed by affinity chromatography of a his-tagged QCR in the presence of the mild detergent digitonin. In comparison to purification with laurylmaltoside, the presence of both QCR and COX subunits was detected in the elution fractions by SDS-PAGE, Cyc1p reductase and TMPD oxidase activity assays and immunoblot analysis. The CL-dependent formation of the supercomplex between QCR and COX was analysed by replacement variants in the CL-binding site of QCR in CL containing and CL free environment. With an increasing number of replacements of the three lysines the CL-binding pocket supercomplex formation was not abolished, when CL is present as shown by BN-PAGE analysis. This was supported by the synergetic decrease in enzyme activity for both enzymes upon increased number of replacements. In the CL-free environment, no supracomplex formation was observed for a wildtype CL binding site. By replacements of two lysines in the CL-binding pocket, supercomplex formation could be recovered as revealed by BN-PAGE. This indicates, that CL may serve as a charge neutralizer for the lysines near the presumed interaction domain between complex III and complex IV. The obtained results for centre P provide new information of residues critical for stabilisation of ubiquinol and controlling electron short circuit reactions. The observations for centre N variants clearly support the proposed two proton transfer pathways and the role of the bound phospholipids in centre N kinetics. Variants in the Cyc1p binding site suggest a role for F230 both in Cyc1p binding and electron transfer. Clear interaction between the high and low potential chain in both Cyt1p and centre N variants strongly support long-range interactions in the complex. Studies on the supramolecular association of complex III and complex IV indicate a new role of Cl in stabilising a supracomplex.
MTO1-deficient mouse model mirrors the human phenotype showing complex I defect and cardiomyopathy
(2014)
Recently, mutations in the mitochondrial translation optimization factor 1 gene (MTO1) were identified as causative in children with hypertrophic cardiomyopathy, lactic acidosis and respiratory chain defect. Here, we describe an MTO1-deficient mouse model generated by gene trap mutagenesis that mirrors the human phenotype remarkably well. As in patients, the most prominent signs and symptoms were cardiovascular and included bradycardia and cardiomyopathy. In addition, the mutant mice showed a marked worsening of arrhythmias during induction and reversal of anaesthesia. The detailed morphological and biochemical workup of murine hearts indicated that the myocardial damage was due to complex I deficiency and mitochondrial dysfunction. In contrast, neurological examination was largely normal in Mto1-deficient mice. A translational consequence of this mouse model may be to caution against anaesthesia-related cardiac arrhythmias which may be fatal in patients.