Refine
Document Type
- Article (17)
- Doctoral Thesis (2)
Has Fulltext
- yes (19)
Is part of the Bibliography
- no (19)
Keywords
- executive function (3)
- strength training (3)
- Older adults (2)
- cognition (2)
- neurocognitive (2)
- ACL rupture (1)
- Aerobic exercise training (1)
- Athletes (1)
- Blood flow restriction (1)
- COINS (1)
Institute
Die Laufökonomie erfasst den Wirkungsgrad der kardiometabolischen Energiebereitstellung eines Menschen für die bipedale Fortbewegung. Ob diese, im Leistungssport häufig angewandte, Größe auch bei Amateursportlern ein leistungsbeeinflussender Faktor ist, wurde bislang noch nicht systematisch untersucht. Speziell die großen Leistungsunterschiede bei Amateursportlern und die Vielzahl an Erfassungs- und Auswertungsmethoden stellen für die interindividuelle Vergleichbarkeit in diesem Kollektiv bislang noch ungelöste Probleme dar.
Die vorliegende Untersuchung verfolgt drei Ziele: 1) Die Überprüfung der Eignung standardisierter stufenförmiger Belastungsprotokolle zur Laufökonomieermittlung; 2) Die Analyse des Einflusses der relativen Beanspruchungsintensität auf die Laufökonomie; und 3) Den Nachweis der Bedeutung der Laufökonomie für die Laufleistung von Amateursportlern unterschiedlicher Leistungsfähigkeit. Zu diesem Zweck wurden zwei unabhängige Studien im Querschnittdesign entworfen. Das erste Experiment überprüfte die Eignung spiroergometrischer Kenngrößen aus stufenförmigen Belastungstests zur Bestimmung der Laufökonomie und deren Einflüsse auf die Laufleistung bei Amateursportlern. Die zweite dieser Arbeit zugrundeliegende Studie diente zur Identifikation des optimalen Beanspruchungsniveaus zur zuverlässigen Bestimmung von Parametern der Laufökonomie bei Amateursportlern.
Die vorliegenden Ergebnisse deuten darauf hin, dass stufenförmige Belastungsprotokolle zur Laufökonomieermittlung an definierten Beanspruchungspunkten geeignet sind. Sie bestätigen den Einfluss der Laufökonomie auf die Laufleistung bei Amateursportlern unabhängig von der maximalen Sauerstoffaufnahme. Die Auswertung als Sauerstoff- (ml/kg/m) und/oder Kalorienumsetzung (kcal/kg/km) pro zurückgelegte Strecke an standardisierten submaximalen Referenzpunkten erscheint im Amateurbereich empfehlenswert. Speziell für Amateursportler können diese Größen nicht nur als leistungslimitierender Faktor interpretiert sondern auch zur Quantifizierung des bewegungsbezogenen Energieverbrauchs und des damit assoziierten Gesundheitsnutzen körperlicher Aktivität herangezogen werden.
Introduction Current: evidence suggests that the loss of mechanoreceptors after anterior cruciate ligament (ACL) tears might be compensated by increased cortical motor planning. This occupation of cerebral resources may limit the potential to quickly adapt movements to unforeseen external stimuli in the athletic environment. To date, studies investigating such neural alterations during movement focused on simple, anticipated tasks with low ecological validity. This trial, therefore, aims to investigate the cortical and biomechanical processes associated with more sport-related and injury-related movements in ACL-reconstructed individuals.
Methods and analysis: ACL-reconstructed participants and uninjured controls will perform repetitive countermovement jumps with single leg landings. Two different conditions are to be completed: anticipated (n=35) versus unanticipated (n=35) successful landings. Under the anticipated condition, participants receive the visual information depicting the requested landing leg prior to the jump. In the unanticipated condition, this information will be provided only about 400 msec prior to landing. Neural correlates of motor planning will be measured using electroencephalography. In detail, movement-related cortical potentials, frequency spectral power and functional connectivity will be assessed. Biomechanical landing quality will be captured via a capacitive force plate. Calculated parameters encompass time to stabilisation, vertical peak ground reaction force, and centre of pressure path length. Potential systematic differences between ACL-reconstructed individuals and controls will be identified in dependence of jumping condition (anticipated/ unanticipated, injured/uninjured leg and controls) by using interference statistics. Potential associations between the cortical and biomechanical measures will be calculated by means of correlation analysis. In case of statistical significance (α<0.05.) further confounders (cofactors) will be considered.
Ethics and dissemination: The independent Ethics Committee of the University of Frankfurt (Faculty of Psychology and Sports Sciences) approved the study. Publications in peer-reviewed journals are planned. The findings will be presented at scientific conferences.
Trial status: At the time of submission of this manuscript, recruitment is ongoing.
Trial registration number: NCT03336060; Pre-results.
Failed jump landings represent a key mechanism of musculoskeletal trauma. It has been speculated that cognitive dual-task loading during the flight phase may moderate the injury risk. This study aimed to explore whether increased visual distraction can compromise landing biomechanics. Twenty-one healthy, physically active participants (15 females, 25.8 ± 0.4 years) completed a series of 30 counter-movement jumps (CMJ) onto a capacitive pressure platform. In addition to safely landing on one leg, they were required to memorize either one, two or three jersey numbers shown during the flight phase (randomly selected and equally balanced over all jumps). Outcomes included the number of recall errors as well as landing errors and three variables of landing kinetics (time to stabilization/TTS, peak ground reaction force/pGRF, length of the centre of pressure trace/COPT). Differences between the conditions were calculated using the Friedman test and the post hoc Bonferroni-Holm corrected Wilcoxon test. Regardless of the condition, landing errors remained unchanged (p = .46). In contrast, increased visual distraction resulted in a higher number of recall errors (chi² = 13.3, p = .001). Higher cognitive loading, furthermore, appeared to negatively impact mediolateral COPT (p < .05). Time to stabilization (p = .84) and pGRF (p = .78) were unaffected. A simple visual distraction in a controlled experimental setting is sufficient to adversely affect landing stability and task-related short-term memory during CMJ. The ability to precisely perceive the environment during movement under time constraints may, hence, represent a new injury risk factor and should be investigated in a prospective trial.
Background: We aimed to investigate the potential effects of a 4-week motor–cognitive dual-task training on cognitive and motor function as well as exercise motivation in young, healthy, and active adults.
Methods: A total of 26 participants (age 25 ± 2 years; 10 women) were randomly allocated to either the intervention group or a control group. The intervention group performed a motor–cognitive training (3×/week), while the participants of the control group received no intervention. Before and after the intervention period of 4 weeks, all participants underwent cognitive (d2-test, Trail Making Test) and motor (lower-body choice reaction test and time to stabilization test) assessments. Following each of the 12 workouts, self-reported assessments (rating of perceived exertion, enjoyment and pleasant anticipation of the next training session) were done. Analyses of covariances and 95% confidence intervals plotting for between group and time effects were performed.
Results: Data from 24 participants were analysed. No pre- to post-intervention improvement nor a between-group difference regarding motor outcomes (choice-reaction: F = 0.5; time to stabilization test: F = 0.7; p > 0.05) occurred. No significant training-induced changes were found in the cognitive tests (D2: F = 0.02; Trail Making Test A: F = 0.24; Trail Making Test B: F = 0.002; p > 0.05). Both enjoyment and anticipation of the next workout were rated as high.
Discussion: The neuro-motor training appears to have no significant effects on motor and cognitive function in healthy, young and physically active adults. This might be explained in part by the participants’ very high motor and cognitive abilities, the comparably low training intensity or the programme duration. The high degree of exercise enjoyment, however, may qualify the training as a facilitator to initiate and maintain regular physical activity. The moderate to vigorous intensity levels further point towards potential health-enhancing cardiorespiratory effects.
Beneficial acute effects of resistance exercise on cognitive functions may be modified by exercise intensity or by habitual physical activity. Twenty-six participants (9 female and 17 male; 25.5 ± 3.4 years) completed four resistance exercise interventions in a randomized order on separate days (≥48 h washout). The intensities were set at 60%, 75%, and 90% of the one repetition maximum (1RM). Three interventions had matched workloads (equal resistance*nrepetitions). One intervention applied 75% of the 1RM and a 50% reduced workload (resistance*nrepetitions = 50%). Cognitive attention (Trail Making Test A—TMTA), task switching (Trail Making Test B—TMTB), and working memory (Digit Reading Spans Backward) were assessed before and immediately after exercise. Habitual activity was assessed as MET hours per week using the International Physical Activity Questionnaire. TMTB time to completion was significantly shorter after exercise with an intensity of 60% 1RM and 75% 1RM and 100% workload. Friedman test indicated a significant effect of exercise intensity in favor of 60% 1RM. TMTA performance was significantly shorter after exercise with an intensity of 60% 1RM, 90% 1RM, and 75% 1RM (50% workload). Habitual activity with vigorous intensity correlated positively with the baseline TMTB and Digit Span Forward performance but not with pre- to post-intervention changes. Task switching, based on working memory, mental flexibility, and inhibition, was beneficially influenced by acute exercise with moderate intensity whereas attention performance was increased after exercise with moderate and vigorous intensity. The effect of regular activity had no impact on acute exercise effects.
Physical inactivity is discussed as one of the most detrimental influences for lifestyle-related medical complications such as obesity, heart disease, hypertension, diabetes and premature mortality in in- and outpatients with major depressive disorder (MDD). In contrast, intervention studies indicate that moderate-to-vigorous-intensity physical activity (MVPA) might reduce complications and depression symptoms itself. Self-reported data on depression [Beck-Depression-Inventory-II (BDI-II)], general habitual well-being (FAHW), self-esteem and physical self-perception (FAHW, MSWS) were administrated in a cross-sectional study with 76 in- and outpatients with MDD. MVPA was documented using ActiGraph wGT3X + ® accelerometers and fitness was measured using cardiopulmonary exercise testing (CPET). Subgroups were built according to activity level (low PA defined as MVPA < 30 min/day, moderate PA defined as MVPA 30–45 min/day, high PA defined as MVPA > 45 min/day). Statistical analysis was performed using a Mann–Whitney U and Kruskal–Wallis test, Spearman correlation and mediation analysis. BDI-II scores and MVPA values of in- and outpatients were comparable, but fitness differed between the two groups. Analysis of the outpatient group showed a negative correlation between BDI-II and MVPA. No association of inpatient MVPA and psychopathology was found. General habitual well-being and self-esteem mediated the relationship between outpatient MVPA and BDI-II. The level of depression determined by the BDI-II score was significantly higher in the outpatient low- and moderate PA subgroups compared to outpatients with high PA. Fitness showed no association to depression symptoms or well-being. To ameliorate depressive symptoms of MDD outpatients, intervention strategies should promote habitual MVPA and exercise exceeding the duration recommended for general health (≥ 30 min/day). Further studies need to investigate sufficient MVPA strategies to impact MDD symptoms in inpatient settings. Exercise effects seem to be driven by changes of well-being rather than increased physical fitness.
Beneficial acute effects of resistance exercise on cognitive functions may be modified by exercise intensity or by habitual physical activity. Twenty-six participants (9 female and 17 male; 25.5 ± 3.4 years) completed four resistance exercise interventions in a randomized order on separate days (≥48 h washout). The intensities were set at 60%, 75%, and 90% of the one repetition maximum (1RM). Three interventions had matched workloads (equal resistance*nrepetitions). One intervention applied 75% of the 1RM and a 50% reduced workload (resistance*nrepetitions = 50%). Cognitive attention (Trail Making Test A—TMTA), task switching (Trail Making Test B—TMTB), and working memory (Digit Reading Spans Backward) were assessed before and immediately after exercise. Habitual activity was assessed as MET hours per week using the International Physical Activity Questionnaire. TMTB time to completion was significantly shorter after exercise with an intensity of 60% 1RM and 75% 1RM and 100% workload. Friedman test indicated a significant effect of exercise intensity in favor of 60% 1RM. TMTA performance was significantly shorter after exercise with an intensity of 60% 1RM, 90% 1RM, and 75% 1RM (50% workload). Habitual activity with vigorous intensity correlated positively with the baseline TMTB and Digit Span Forward performance but not with pre- to post-intervention changes. Task switching, based on working memory, mental flexibility, and inhibition, was beneficially influenced by acute exercise with moderate intensity whereas attention performance was increased after exercise with moderate and vigorous intensity. The effect of regular activity had no impact on acute exercise effects.
Background: Associations between age, concerns or history of falling, and various gait parameters are evident. Limited research, however, exists on how such variables moderate the age-related decline in gait characteristics. The purpose of the present study was to investigate the moderating effects of concerns of falling (formerly referred to as fear of falling), history of falls & diseases, and sociodemographic characteristics on changes in gait characteristics with increasing age in the elderly. Methods: In this individual participant level data re-analysis, data from 198 participants (n = 125 females) from 60 to 94 years of age were analysed (mean 73.9, standard deviation 7.7 years). Dependent variables were major spatiotemporal gait characteristics, assessed using a capacitive force measurement platform (zebris FDM-T). Age (independent variable) and the moderating variables concerns of falling (FES-I), gender/sex, history of falls and fall-related medical records, number of drugs daily taken, and body mass index were used in the statistical analysis. Hierarchical linear mixed moderation models (multilevel analysis) with stepwise (forward) modelling were performed. Results: Decreases of gait speed (estimate = −.03, equals a decrease of 0.03 m/s per year of ageing), absolute (− 1.4) and gait speed-normalized (−.52) stride length, step width (−.08), as well as increases in speed normalized cadence (.65) and gait speed variability (.15) are all age-related (each p < .05). Overall and specific situation-related concerns of falling (estimates: −.0012 to −.07) were significant moderators. History of potentially gait- and/or falls-affecting diseases accelerated the age-related decline in gait speed (−.002) and its variability (.03). History of falls was, although non-significant, a relevant moderator (in view of increasing the model fit) for cadence (.058) and gait speed (−.0027). Sociodemographics and anthropometrics showed further moderating effects (sex moderated the ageing effect on stride length, .08; height moderated the effect on the normalised stride length, .26; BMI moderated the effects on step width, .003). Conclusion: Age-related decline in spatiotemporal gait characteristics is moderated by concerns of falling, (non-significantly) by history of falls, significantly by history of diseases, and sociodemographic characteristics in 60–94 years old adults. Knowing the interactive contributions to gait impairments could be helpful for tailoring interventions for the prevention of falls. Trial registration: Re-analysis of [21–24].
Sedentäres Verhalten steht als Risikofaktor in Verbindung mit kardiovaskulären und metabolischen Erkrankungen sowie der Gesamtsterblichkeit. Die Unterbrechung sedentären Verhaltens durch körperlicher Aktivität wird mit einem verringerten Risiko für kardiovaskuläre und metabolische Erkrankungen in Zusammenhang gebracht. Ziel der Studie ist der Vergleich akuter Effekte aktiver Unterbrechungen während- und körperlicher Aktivität vor mehrstündigem sedentärem Verhalten auf metabolische Veränderungen, innerhalb einer Gruppe junger gesunder Frauen.
18 gesunde Frauen (25.6y±2.6, BMI 21.5 kg/m2±2.0) nahmen an einer balancierten Crossover-Studie mit Kontroll-(CTRL) und 2 verschiedenen Bewegungsarmen teil. Alle Studienarme umfassten eine 4 stündige Sitzphase und eine Frühstücksmahlzeit mit standardisierter Zusammensetzung und selbstgewählter Menge. Während der Bewegungsarme fuhren die Probandinnen 30min am Stück vor (PRE) oder in 5x je 6min als aktive Unterbrechung (BREAK) der Sitzphase auf einem Radergometer (70% VO2max). Es wurden Insulin-, Glucose- und Triacylglycerol-Blutwerte vor (Baseline) und zu 6 Zeitpunkten während der Sitzphase in allen 3 Studienarmen erfasst. Die Kinetik dieser metabolischen Parameter wurde mittels maximaler- und minimaler Differenz zum Baselinewert sowie „incremental Area Under the Curve“ (iAUC) als Hauptzielparameter erfasst. Die Untersuchung auf Unterschiede der Hauptzielparameter zwischen den Untersuchungsarmen wurde mittels Varianzanalysen unter Berücksichtigung der aufgenommenen Nahrungsmenge als Kovariate (ANCOVA) durchgeführt.
Die Analyse der Insulinkinetik zeigte geringere Serum Insulinkonzentrationen im Zeitverlauf (iAUC) im Untersuchungsarm mit aktiven Unterbrechungen (BREAK). Weiterhin war in BREAK die maximale Differenz zum Baselinewert der Insulinkonzentration verglichen zur Bedingung ohne Aktivität (CTRL) niedriger. Die Kinetik der Blutglukose und Serum Triacylglycerolkonzentration unterschied sich nicht zwischen den Untersuchungsarmen. Die aufgenommene Nahrungsmenge zeigte einen deutlichen Einfluss auf die Kinetik der Insulin und Glukosekonzentration.
Die Resultate bestätigen spezifische Effekte von aktiven Unterbrechungen auf die zelluläre Glukoseaufnahme während sedentären Verhaltens. Die Nahrungsmenge beeinflusst das Ausmaß der postprandialen metabolischen Veränderungen während sedentären Verhaltens. Zukünftige Studien sollten den Einfluss der Häufigkeit und zeitliche Anordnung von Pausen in Abhängigkeit der Nahrungsaufnahme überprüfen.
Background: Protection against airborne infection is currently, due to the COVID-19-associated restrictions, ubiquitously applied during public transport use, work and leisure time. Increased carbon dioxide re-inhalation and breathing resistance may result thereof and, in turn, may negatively impact metabolism and performance.
Objectives: To deduce the impact of the surgical mask and filtering face piece type 2 (FFP2) or N95 respirator application on gas exchange (pulse-derived oxygen saturation (SpO2), carbon dioxide partial pressure (PCO2), carbon dioxide exhalation (VCO2) and oxygen uptake (VO2)), pulmonary function (respiratory rate and ventilation) and physical performance (heart rate HR, peak power output Wpeak).
Methods: Systematic review with meta-analysis. Literature available in Medline/Pubmed, the Cochrane Library and the Web of Knowledge with the last search on the 6th of May 2021. Eligibility criteria: Randomised controlled parallel group or crossover trials (RCT), full-text availability, comparison of the acute effects of ≥ 1 intervention (surgical mask or FFP2/N95 application) to a control/comparator condition (i.e. no mask wearing). Participants were required to be healthy humans and > 16 years of age without conditions or illnesses influencing pulmonary function or metabolism. Risk of bias was rated using the crossover extension of the Cochrane risk of bias assessment tool II. Standardised mean differences (SMD, Hedges' g) with 95% confidence intervals (CI) were calculated, overall and for subgroups based on mask and exercise type, as pooled effect size estimators in our random-effects meta-analysis.
Results: Of the 1499 records retrieved, 14 RCTs (all crossover trials, high risk of bias) with 25 independent intervention arms (effect sizes per outcome) on 246 participants were included. Masks led to a decrease in SpO2 during vigorous intensity exercise (6 effect sizes; SMD = − 0.40 [95% CI: − 0.70, − 0.09], mostly attributed to FFP2/N95) and to a SpO2-increase during rest (5 effect sizes; SMD = 0.34 [95% CI: 0.04, 0.64]); no general effect of mask wearing on SpO2 occurred (21 effect sizes, SMD = 0.34 [95% CI: 0.04, 0.64]). Wearing a mask led to a general oxygen uptake decrease (5 effect sizes, SMD = − 0.44 [95% CI: − 0.75, − 0.14]), to slower respiratory rates (15 effect sizes, SMD = − 0.25 [95% CI: − 0.44, − 0.06]) and to a decreased ventilation (11 effect sizes, SMD = − 0.43 [95% CI: − 0.74, − 0.12]). Heart rate (25 effect sizes; SMD = 0.05 [95% CI: − 0.09, 0.19]), Wpeak (9 effect sizes; SMD = − 0.12 [95% CI: − 0.39, 0.15]), PCO2 (11 effect sizes; SMD = 0.07 [95% CI: − 0.14, 0.29]) and VCO2 (4 effect sizes, SMD = − 0.30 [95% CI: − 0.71, 0.10]) were not different to the control, either in total or dependent on mask type or physical activity status.
Conclusion: The number of crossover-RCT studies was low and the designs displayed a high risk of bias. The within-mask- and -intensity-homogeneous effects on gas exchange kinetics indicated larger detrimental effects during exhausting physical activities. Pulse-derived oxygen saturation was increased during rest when a mask was applied, whereas wearing a mask during exhausting exercise led to decreased oxygen saturation. Breathing frequency and ventilation adaptations were not related to exercise intensity. FFP2/N95 and, to a lesser extent, surgical mask application negatively impacted the capacity for gas exchange and pulmonary function but not the peak physical performance.
Registration: Prospero registration number: CRD42021244634