Refine
Year of publication
Language
- English (456)
Has Fulltext
- yes (456)
Is part of the Bibliography
- no (456)
Keywords
- BESIII (17)
- Branching fraction (15)
- e +-e − Experiments (14)
- Particle and Resonance Production (6)
- Charm Physics (4)
- Charmonium (4)
- Hadronic decays (4)
- Lepton colliders (4)
- QCD (4)
- Quarkonium (4)
Institute
- Physik (453)
- Medizin (2)
- Frankfurt Institute for Advanced Studies (FIAS) (1)
- Informatik (1)
Electroencephalography (EEG) represents a widely established method for assessing altered and typically developing brain function. However, systematic studies on EEG data quality, its correlates, and consequences are scarce. To address this research gap, the current study focused on the percentage of artifact-free segments after standard EEG pre-processing as a data quality index. We analyzed participant-related and methodological influences, and validity by replicating landmark EEG effects. Further, effects of data quality on spectral power analyses beyond participant-related characteristics were explored. EEG data from a multicenter ADHD-cohort (age range 6 to 45 years), and a non-ADHD school-age control group were analyzed (ntotal = 305). Resting-state data during eyes open, and eyes closed conditions, and task-related data during a cued Continuous Performance Task (CPT) were collected. After pre-processing, general linear models, and stepwise regression models were fitted to the data. We found that EEG data quality was strongly related to demographic characteristics, but not to methodological factors. We were able to replicate maturational, task, and ADHD effects reported in the EEG literature, establishing a link with EEG-landmark effects. Furthermore, we showed that poor data quality significantly increases spectral power beyond effects of maturation and symptom severity. Taken together, the current results indicate that with a careful design and systematic quality control, informative large-scale multicenter trials characterizing neurophysiological mechanisms in neurodevelopmental disorders across the lifespan are feasible. Nevertheless, results are restricted to the limitations reported. Future work will clarify predictive value.
Abstract: Neurophysiological measures of preparation and attention are often atypical in ADHD. Still, replicated findings that these measures predict which patients improve after Neurofeedback (NF), reveal neurophysiological specificity, and reflect ADHD-severity are limited. Methods: We analyzed children’s preparatory (CNV) and attentional (Cue-P3) brain activity and behavioral performance during a cued Continuous Performance Task (CPT) before and after slow cortical potential (SCP)-NF or semi-active control treatment (electromyogram biofeedback). Mixed-effects models were performed with 103 participants at baseline and 77 were assessed for pre-post comparisons focusing on clinical outcome prediction, specific neurophysiological effects of NF, and associations with ADHD-severity. Results: Attentional and preparatory brain activity and performance were non-specifically reduced after treatment. Preparatory activity in the SCP-NF group increased with clinical improvement. Several performance and brain activity measures predicted non-specific treatment outcome. Conclusion: Specific neurophysiological effects after SCP-NF were limited to increased neural preparation associated with improvement on ADHD-subscales, but several performance and neurophysiological measures of attention predicted treatment outcome and reflected symptom severity in ADHD. The results may help to optimize treatment.
We report on the first search for ¯Λ−Λ oscillations in the decay 𝐽/𝜓→𝑝𝐾−¯Λ+c.c. by analyzing 1.31×109 𝐽/𝜓 events accumulated with the BESIII detector at the BEPCII collider. The 𝐽/𝜓 events are produced using 𝑒+𝑒− collisions at a center of mass energy √𝑠=3.097 GeV. No evidence for hyperon oscillations is observed. The upper limit for the oscillation rate of ¯Λ to Λ hyperons is determined to be 𝒫(Λ)=[ℬ(𝐽/𝜓→𝑝𝐾−Λ+c.c.)/ℬ(𝐽/𝜓→𝑝𝐾−¯Λ+c.c.)]<4.4×10−6 corresponding to an oscillation parameter 𝛿𝑚Λ¯Λ of less than 3.8×10−18 GeV at the 90% confidence level.
The decays of χc2→K+K−π0, KSK±π∓ and π+π−π0 are studied with the ψ(3686) data samples collected with the Beijing Spectrometer (BESIII). For the first time, the branching fractions of χc2→K∗K¯¯¯¯¯, χc2→a±2(1320)π∓/a02(1320)π0 and χc2→ρ(770)±π∓ are measured. Here K∗K¯¯¯¯¯ denotes both K∗±K∓ and K∗0K¯¯¯¯¯0+c.c., and K∗ denotes the resonances K∗(892), K∗2(1430) and K∗3(1780). The observations indicate a strong violation of the helicity selection rule in χc2 decays into vector and pseudoscalar meson pairs. The measured branching fractions of χc2→K∗(892)K¯¯¯¯¯ are more than 20 times larger than that of χc2→ρ(770)±π∓, which implies the effects are largely due to U-spin symmetry breaking, rather than just isospin symmetry breaking in charmonium decays.
We measure the inclusive semielectronic decay branching fraction of the D+s meson. A double-tag technique is applied to e+e− annihilation data collected by the BESIII experiment at the BEPCII collider, operating in the center-of-mass energy range 4.178–4.230 GeV. We select positrons fromD+s→Xe+νe with momenta greater than 200 MeV/c and determine the laboratory momentum spectrum, accounting for the effects of detector efficiency and resolution. The total positron yield and semielectronic branching fraction are determined by extrapolating this spectrum below the momentum cutoff. We measure the D+s semielectronic branching fraction to be(6.30±0.13(stat.)±0.09(syst.)±0.04(ext.))%, showing no evidence for unobserved exclusive semielectronic modes. We combine this result with external data taken from literature to determine the ratio of the D+s and D0 semielectronic widths, Γ(D+s→Xe+νe)Γ(D0→Xe+νe)=0.790±0.016(stat.)±0.011(syst.)±0.016(ext.). Our results are consistent with and more precise than previous measurements.
The Born cross sections of the e+e− → D*+D*− and e+e− → D*+D− processes are measured using e+e− collision data collected with the BESIII experiment at center-of-mass energies from 4.085 to 4.600 GeV, corresponding to an integrated luminosity of 15.7 fb−1. The results are consistent with and more precise than the previous measurements by the Belle, Babar and CLEO collaborations. The measurements are essential for understanding the nature of vector charmonium and charmonium-like states.
We search for the di-photon decay of a light pseudoscalar axion-like particle, a, in radiative J/ψ decays, using 10 billion J/ψ events collected with the BESIII detector. We find no evidence of a signal and set upper limits at the 95% confidence level on the product branching fraction B(J/ψ→γa)×B(a→γγ) and the axion-like particle photon coupling constant gaγγ in the ranges of (3.7−48.5)×10−8 and (2.2−101.8)×10−4 GeV−1, respectively, for 0.18≤ma≤2.85 GeV/c2. These are the most stringent limits to date in this mass region.
The Born cross sections and effective form factors for process 𝑒+𝑒−→Ξ−¯Ξ+ are measured at eight center-of-mass energies between 2.644 and 3.080 GeV, using a total integrated luminosity of 363.9 pb−1 𝑒+𝑒− collision data collected with the BESIII detector at BEPCII. After performing a fit to the Born cross section of 𝑒+𝑒−→Ξ−¯Ξ+, no significant threshold effect is observed.
The process e+e−→ϕη is studied at 22 center-of-mass energy points (√s) between 2.00 and 3.08 GeV using 715 pb−1 of data collected with the BESIII detector. The measured Born cross section of e+e−→ϕη is found to be consistent with BABAR measurements, but with improved precision. A resonant structure around 2.175 GeV is observed with a significance of 6.9σ with mass (2163.5±6.2±3.0) MeV/c2 and width (31.1+21.1−11.6±1.1) MeV, where the first uncertainties are statistical and the second are systematic.
Using 10.1 × 109 J/ψ events produced by the Beijing Electron Positron Collider (BEPCII) at a center-of-mass energy √s = 3.097 GeV and collected with the BESIII detector, we present a search for the rare semi-leptonic decay J/ψ → D−e+νe + c.c. No excess of signal above background is observed, and an upper limit on the branching fraction ℬ(J/ψ → D−e+νe + c. c.) < 7.1 × 10−8 is obtained at 90% confidence level. This is an improvement of more than two orders of magnitude over the previous best limit.