• Deutsch
Login

Open Access

  • Home
  • Search
  • Browse
  • Publish
  • FAQ

Refine

Author

  • Bechtel, Dominique F. (1)
  • Boll, Matthias (1)
  • Demmer, Ulrike (1)
  • Ermler, Ulrich (1)
  • Heimann, Larissa (1)
  • Kayastha, Kanwal (1)
  • Müller, Christina S. (1)
  • Pierik, Antonio J. (1)
  • Schünemann, Volker (1)
  • Ullmann, G. Matthias (1)
+ more

Year of publication

  • 2019 (1) (remove)

Document Type

  • Article (1)

Language

  • English (1)

Has Fulltext

  • yes (1)

Is part of the Bibliography

  • no (1)

Keywords

  • Enzyme mechanisms (1) (remove)

Institute

  • Biochemie und Chemie (1)
  • MPI für Biophysik (1)

1 search hit

  • 1 to 1
  • 10
  • 20
  • 50
  • 100
Low potential enzymatic hydride transfer via highly cooperative and inversely functionalized flavin cofactors (2019)
Willistein, Max ; Bechtel, Dominique F. ; Müller, Christina S. ; Demmer, Ulrike ; Heimann, Larissa ; Kayastha, Kanwal ; Schünemann, Volker ; Pierik, Antonio J. ; Ullmann, G. Matthias ; Ermler, Ulrich ; Boll, Matthias
Hydride transfers play a crucial role in a multitude of biological redox reactions and are mediated by flavin, deazaflavin or nicotinamide adenine dinucleotide cofactors at standard redox potentials ranging from 0 to –340 mV. 2-Naphthoyl-CoA reductase, a key enzyme of oxygen-independent bacterial naphthalene degradation, uses a low-potential one-electron donor for the two-electron dearomatization of its substrate below the redox limit of known biological hydride transfer processes at E°’ = −493 mV. Here we demonstrate by X-ray structural analyses, QM/MM computational studies, and multiple spectroscopy/activity based titrations that highly cooperative electron transfer (n = 3) from a low-potential one-electron (FAD) to a two-electron (FMN) transferring flavin cofactor is the key to overcome the resonance stabilized aromatic system by hydride transfer in a highly hydrophobic pocket. The results evidence how the protein environment inversely functionalizes two flavins to switch from low-potential one-electron to hydride transfer at the thermodynamic limit of flavin redox chemistry.
  • 1 to 1

OPUS4 Logo

  • Contact
  • Imprint
  • Sitelinks