Refine
Document Type
- Preprint (4)
- Article (2)
- Doctoral Thesis (1)
Has Fulltext
- yes (7)
Is part of the Bibliography
- no (7)
Keywords
Institute
We discuss modifications of the gyromagnetic moment of electrons and muons due to a minimal length scale combined with a modified fundamental scaleMf . First-order deviations from the theoretical standard model value for g-2 due to these String Theory-motivated e ects are derived. Constraints for the new fundamental scale Mf are given.
Es wird ein effektives Modell zur Berücksichtigung einer Minimalen Länge in der Quantenfeldtheorie vorgestellt. Im Falle der Existenz Großer Extradimensionen kann dies zu überprüfbaren Modifikationen verschiedener Experimente führen. Es werden verschiedene Phänomene wie z.B. der Casimir-Effekt, Neutrino-Nukleon-Reaktionen oder Neutrinooszillationen diskutiert.
No black holes at IceCube
(2006)
We examine experimental signatures of TeV-mass black hole formation in heavy ion collisions at the LHC. We find that the black hole production results in a complete disappearance of all very high p_T (> 500 GeV) back-to-back correlated di-jets of total mass M > M_f ~ 1 TeV. We show that the subsequent Hawking-decay produces multiple hard mono-jets and discuss their detection. We study the possibility of cold black hole remnant (BHR) formation of mass ~ M_f and the experimental distinguishability of scenarios with BHRs and those with complete black hole decay. Finally we point out that a Heckler-Kapusta-Hawking plasma may form from the emitted mono-jets. In this context we present new simulation data of Mach shocks and of the evolution of initial conditions until the freeze-out.
Modifications of the gyromagnetic moment of electrons and muons due to a minimal length scale combined with a modified fundamental scale Mf are explored. First-order deviations from the theoretical SM value for g−2 due to these string theory-motivated effects are derived. Constraints for the fundamental scale Mf are given.
Large extra dimensions could lower the Planck scale to experimentally accessible values. Not only is the Planck scale the energy scale at which effects of modified gravity become important. The Planck length also acts as a minimal length in nature, providing a natural ultraviolet cutoff and a limit to the possible resolution of spacetime.
In this Letter we examine the influence of the minimal length on the Casimir energy between two plates.