Refine
Document Type
- Article (8)
- Conference Proceeding (1)
Language
- English (9)
Has Fulltext
- yes (9)
Is part of the Bibliography
- no (9)
Keywords
- Aging (1)
- Hygroscopicity (1)
- Organosulfates (1)
- SOA (1)
Institute
- Geowissenschaften (7)
- Biowissenschaften (2)
In this study we show how size-resolved measurements of aerosol particles and cloud condensation nuclei (CCN) can be used to characterize the supersaturation of water vapor in a cloud. The method was developed and applied for the investigation of a cloud event during the ACRIDICON-Zugspitze campaign (17 September to 4 October 2012) at the high-alpine research station Schneefernerhaus (German Alps, 2650 m a.s.l.). Number size distributions of total and interstitial aerosol particles were measured with a scanning mobility particle sizer (SMPS), and size-resolved CCN efficiency spectra were recorded with a CCN counter system operated at different supersaturation levels.
During the evolution of a cloud, aerosol particles are exposed to different supersaturation levels. We outline and compare different estimates for the lower and upper bounds (Slow, Shigh) and the average value (Savg) of peak supersaturation encountered by the particles in the cloud. For the investigated cloud event, we derived Slow ≈ 0.19–0.25%, Shigh ≈ 0.90–1.64% and Savg ≈ 0.38–0.84%. Estimates of Slow, Shigh and Savg based on aerosol size distribution data require specific knowledge or assumptions of aerosol hygroscopicity, which are not required for the derivation of Slow and Savg from the size-resolved CCN efficiency spectra.
In this study we show how size-resolved measurements of aerosol particles and cloud condensation nuclei (CCN) can be used to characterize the supersaturation of water vapor in a cloud. The method was developed and applied during the ACRIDICON-Zugspitze campaign (17 September to 4 October 2012) at the high-Alpine research station Schneefernerhaus (German Alps, 2650 m a.s.l.). Number size distributions of total and interstitial aerosol particles were measured with a scanning mobility particle sizer (SMPS), and size-resolved CCN efficiency spectra were recorded with a CCN counter system operated at different supersaturation levels.
During the evolution of a cloud, aerosol particles are exposed to different supersaturation levels. We outline and compare different estimates for the lower and upper bounds (Slow, Shigh) and the average value (Savg) of peak supersaturation encountered by the particles in the cloud. A major advantage of the derivation of Slow and Savg from size-resolved CCN efficiency spectra is that it does not require the specific knowledge or assumptions about aerosol hygroscopicity that are needed to derive estimates of Slow, Shigh, and Savg from aerosol size distribution data. For the investigated cloud event, we derived Slow ≈ 0.07–0.25%, Shigh ≈ 0.86–1.31% and Savg ≈ 0.42–0.68%.
As part of the CLACE-6 campaign we performed size-resolved CCN measurements for a~supersaturation range of S = 0.079 % to 0.66% at the high-alpine research station Jungfraujoch, Switzerland, in March~2007. The derived effective hygroscopicity parameter κ describing the influence of particle composition on CCN activity was on average 0.23–0.30 for Aitken (50–100 nm) and 0.32–0.43 for accumulation mode particles (100–200 nm). The campaign average value of κ = 0.3 is similar to the average value of κ for other continental locations. When air masses came from southeasterly directions crossing the Po Valley in Italy, particles were much more hygroscopic (κ ≈ 0.42) due to large sulfate mass fractions. The κ values obtained at S = 0.079 % exhibited a good negative correlation with the organic mass fractions derived from PM1 aerosol mass spectrometer (AMS) measurements. Applying a simple mixing rule the organic and inorganic mass fractions observed by the AMS could be used to reproduce the temporal fluctuations of the hygroscopicity of accumulation mode particles quite well.
We show how during a cloud event the aerosol particles were activated as cloud droplets and then removed from the air by precipitation leaving behind only a small amount of accumulation mode particles consisting mainly of weakly CCN-active particles, most likely externally mixed unprocessed soot particles.
During the campaign we had the opportunity to directly compare two DMT CCN counters for a certain time. The total CCN concentration (NCCN,tot) obtained by the two instruments at equal supersaturations agreed well for both possible operating modes: detecting NCCN,tot directly by sampling the polydisperse aerosol with the CCNC, or indirectly by combining size-resolved measurements of the activated fraction with parallel measurements of the particle size distribution (e.g., by SMPS). However, some supersaturation setpoints differed between the two CCNCs by as much as 20% after applying the instrument calibrations, which resulted in differences of the corresponding NCCN,tot of up to 50%. This emphasizes that it is extremely important to carefully calibrate the supersaturation of the instrument, especially at low S.
Size-resolved measurements of atmospheric aerosol and cloud condensation nuclei (CCN) concentrations and hygroscopicity were conducted at the remote Amazon Tall Tower Observatory (ATTO) in the central Amazon Basin over a full seasonal cycle (Mar 2014–Feb 2015). In a companion part 1 paper, we presented an in-depth CCN characterization based on annually as well as seasonally averaged time intervals and discuss different parametrization strategies to represent the Amazonian CCN cycling in modelling studies (M. Pöhlker et al., 2016b). The present part 2 study analyzes the aerosol and CCN variability in original time resolution and, thus, resolves aerosol advection and transformation for the following case studies, which represent the most characteristic states of the Amazonian atmosphere:
1. Near-pristine (NP) conditions, defined as the absence of detectable black carbon (< 0.01 µg m−3), showed their highest occurrence (up to 30 %) in the wet season (i.e., Mar–May). On average, the NP episodes are characterized by a bimodal aerosol size distribution (strong Aitken mode: DAit = 70 nm, NAit = ~ 200 cm−3 vs. weaker accumulation mode: Dacc = 170 nm, Nacc = ~ 60 cm−3), a mostly organic particle composition, and relatively low hygroscopicity levels (κAit = 0.12 vs. κacc = 0.18). The NP CCN efficiency spectrum shows that the CCN population is sensitive to changes in supersaturation (S) over a wide S range.
2. Long-range transport (LRT) conditions frequently mix Saharan dust, African combustion smoke, and sea spray aerosols into the Amazonian wet season atmosphere. The LRT episodes (i.e., Feb–Apr) are characterized by an accumulation mode dominated size distribution (DAit = 80 nm, NAit = 120 cm−3 vs. Dacc = 180 nm, Nacc = 300 cm−3), a clearly increased abundance of dust and salt compounds, and relatively high hygroscopicity levels (κAit = 0.18, κacc = 0.34). The LRT CCN efficiency spectrum shows that the CCN population is highly sensitive to changes in S in the low S regime.
3. Biomass burning (BB) conditions dominate the Amazonian dry season. A selected characteristic BB episode shows a very strong accumulation mode (DAit = 70 nm, NAit = ~ 140 cm−3 vs. Dacc = 170 nm, Nacc = ~ 3400 cm−3), particles with very high organic fractions (> 90 %), and correspondingly low hygroscopicity levels (κAit = 0.14, κacc = 0.17). The BB CCN efficiency spectrum shows that the CCN population is highly sensitive to changes in S in the low S regime.
4. Mixed pollution conditions show the superposition of African (i.e., volcanic) and Amazonian (i.e., biomass burning) aerosol emissions during the dry season. The African aerosols showed a broad monomodal distribution (D = 130 nm, N = ~ 1300 cm−3), with very high sulfate fractions (20 %), and correspondingly high hygroscopicity (κAit = 0.14, κacc = 0.22). This was superimposed by fresh smoke from nearby fires with one strong mode (D = 113 nm, Nacc = ~ 2800 cm−3), an organic-dominated aerosol, and sharply decreased hygroscopicity (κAit = 0.10, κacc = 0.20). These conditions underline the rapidly changing pollution regimes with clear impacts on the aerosol and CCN properties.
Overall, this study provides detailed insights into the CCN cycling in relation to aerosol-cloud interaction in the vulnerable and climate-relevant Amazon region. The detailed analysis of aerosol and CCN key properties and particularly the extracted CCN efficiency spectra with the associated fit parameters provide a basis for an in-depth analysis of aerosol-cloud interaction in the Amazon and beyond.
Size-resolved long-term measurements of atmospheric aerosol and cloud condensation nuclei (CCN) concentrations and hygroscopicity were conducted at the remote Amazon Tall Tower Observatory (ATTO) in the central Amazon Basin over a 1-year period and full seasonal cycle (March 2014–February 2015). The measurements provide a climatology of CCN properties characteristic of a remote central Amazonian rain forest site.
The CCN measurements were continuously cycled through 10 levels of supersaturation (S = 0.11 to 1.10 %) and span the aerosol particle size range from 20 to 245 nm. The mean critical diameters of CCN activation range from 43 nm at S = 1.10 % to 172 nm at S = 0.11 %. The particle hygroscopicity exhibits a pronounced size dependence with lower values for the Aitken mode (κAit = 0.14 ± 0.03), higher values for the accumulation mode (κAcc = 0.22 ± 0.05), and an overall mean value of κmean = 0.17 ± 0.06, consistent with high fractions of organic aerosol.
The hygroscopicity parameter, κ, exhibits remarkably little temporal variability: no pronounced diurnal cycles, only weak seasonal trends, and few short-term variations during long-range transport events. In contrast, the CCN number concentrations exhibit a pronounced seasonal cycle, tracking the pollution-related seasonality in total aerosol concentration. We find that the variability in the CCN concentrations in the central Amazon is mostly driven by aerosol particle number concentration and size distribution, while variations in aerosol hygroscopicity and chemical composition matter only during a few episodes.
For modeling purposes, we compare different approaches of predicting CCN number concentration and present a novel parametrization, which allows accurate CCN predictions based on a small set of input data.
Bioaerosols are considered to play a relevant role in atmospheric processes, but their sources, properties, and spatiotemporal distribution in the atmosphere are not yet well characterized. In the Amazon Basin, primary biological aerosol particles (PBAPs) account for a large fraction of coarse particulate matter, and fungal spores are among the most abundant PBAPs in this area as well as in other vegetated continental regions. Furthermore, PBAPs could also be important ice nuclei in Amazonia. Measurement data on the release of fungal spores under natural conditions, however, are sparse. Here we present an experimental approach to analyze and quantify the spore release from fungi and other spore-producing organisms under natural and laboratory conditions. For measurements under natural conditions, the samples were kept in their natural environment and a setup was developed to estimate the spore release numbers and sizes as well as the microclimatic factors temperature and air humidity in parallel to the mesoclimatic parameters net radiation, rain, and fog occurrence. For experiments in the laboratory, we developed a cuvette to assess the particle size and number of newly released fungal spores under controlled conditions, simultaneously measuring temperature and relative humidity inside the cuvette. Both approaches were combined with bioaerosol sampling techniques to characterize the released particles using microscopic methods. For fruiting bodies of the basidiomycetous species, Rigidoporus microporus, the model species for which these techniques were tested, the highest frequency of spore release occurred in the range from 62 % to 96 % relative humidity. The results obtained for this model species reveal characteristic spore release patterns linked to environmental or experimental conditions, indicating that the moisture status of the sample may be a regulating factor, whereas temperature and light seem to play a minor role for this species. The presented approach enables systematic studies aimed at the quantification and validation of spore emission rates and inventories, which can be applied to a regional mapping of cryptogamic organisms under given environmental conditions.
Size-resolved long-term measurements of atmospheric aerosol and cloud condensation nuclei (CCN) concentrations as well as hygroscopicity were conducted at the remote Amazon Tall Tower Observatory (ATTO) in the central Amazon Basin over a one-year period and full seasonal cycle (March 2014 - February 2015). The presented measurements provide a climatology of CCN properties for a characteristic central Amazonian rain forest site.
The CCN measurements were continuously cycled through 10 levels of supersaturation (S = 0.11 to 1.10 %) and span the aerosol particle size range from 20 to 245 nm. The observed mean critical diameters of CCN activation range from 43 nm at S = 1.10 % to 172 nm at S = 0.11 %. The particle hygroscopicity exhibits a pronounced size dependence with lower values for the Aitken mode (κAit = 0.14 ± 0.03), elevated values for the accumulation mode (κAcc = 0.22 ± 0.05), and an overall mean value of κmean = 0.17 ± 0.06, consistent with high fractions of organic aerosol.
The hygroscopicity parameter κ exhibits remarkably little temporal variability: no pronounced diurnal cycles, weak seasonal trends, and few short-term variations during long-range transport events. In contrast, the CCN number concentrations exhibit a pronounced seasonal cycle, tracking the pollution-related seasonality in total aerosol concentration. We find that the variability in the CCN concentrations in the central Amazon is mostly driven by aerosol particle number concentration and size distribution, while variations in aerosol hygroscopicity and chemical composition matter only during a few episodes.
For modelling purposes, we compare different approaches of predicting CCN number concentration and present a novel parameterization, which allows accurate CCN predictions based on a small set of input data.
Bioaerosols are considered to play a relevant role in atmospheric processes, but their sources, properties and spatiotemporal distribution in the atmosphere are not yet well characterized. In the Amazon Basin, primary biological aerosol particles (PBAP) account for a large fraction of coarse particulate matter, and fungal spores are among the most abundant PBAP there as well as in other vegetated continental regions. furthermore, PBAP could also be important ice nuclei in Amazonia. Measurement data on the release of fungal spores under natural conditions, however, are sparse. Here we present an experimental approach to analyze and quantify the spore release from fungi and other spore producing organisms under natural and laboratory conditions. For measurements under natural conditions, the samples were kept in their natural environment and a setup was developed to estimate the spore release numbers and sizes together with the microclimatic factors temperature and air humidity, as well as the mesoclimatic parameters net radiation, rain, and fog occurrence. For experiments in the laboratory, we developed a cuvette to assess the particle size and number of newly released fungal spores under controlled conditions, simultaneously measuring temperature and relative humidity inside the cuvette. Both approaches were combined with bioaerosol sampling techniques to characterize the released particles by microscopic methods. For fruiting bodies of the basidiomycetous species, Rigidoporus microporus, the model species for which these techniques were tested, the highest frequency of spore release occurred in the range of 62 and 96 % relative humidity. The results obtained for this model species reveal characteristic spore release patterns linked to environmental or experimental conditions, indicating that the moisture status of the sample may be a regulating factor, while temperature and light seem to play a minor role for this species. The presented approach enables systematic studies aimed at the quantification and validation of spore emission rates and inventories, which can be applied to a regional mapping of cryptogamic organisms under given environmental conditions.