Refine
Year of publication
Document Type
- Article (11)
Language
- English (11)
Has Fulltext
- yes (11)
Is part of the Bibliography
- no (11)
Keywords
- MR spectroscopy (2)
- 19F MR spectroscopy (1)
- 1H MR spectroscopy (1)
- 2-hydroxyglutarate (1)
- APT-CEST (1)
- ATP (1)
- Aerobic exercise training (1)
- Blood cells (1)
- CEST EPI (1)
- Cellular energy metabolism (1)
Institute
- Medizin (10)
- Sportwissenschaften (2)
- Biowissenschaften (1)
- Georg-Speyer-Haus (1)
Background: The ERGO2 (Ernaehrungsumstellung bei Patienten mit Rezidiv eines Glioblastoms) MR-spectroscopic imaging (MRSI) subtrial investigated metabolism in patients randomized to calorically restricted ketogenic diet/intermittent fasting (crKD-IF) versus standard diet (SD) in addition to re-irradiation (RT) for recurrent malignant glioma. Intracerebral concentrations of ketone bodies (KB), intracellular pH (pHi), and adenosine triphosphate (ATP) were non-invasively determined. Methods: 50 patients were randomized (1:1): Group A keeping a crKD-IF for nine days, and Group B a SD. RT was performed on day 4-8. Twenty-three patients received an extended MRSI-protocol (1H decoupled 31P MRSI with 3D chemical shift imaging (CSI) and 2D 1H point-resolved spectroscopy (PRESS)) at a 3T scanner at baseline and on day 6. Voxels were selected from the area of recurrent tumor and contralateral hemisphere. Spectra were analyzed with LCModel, adding simulated signals of 3-hydroxybutyrate (βOHB), acetone (Acn) and acetoacetate (AcAc) to the standard basis set. Results: Acn was the only reliably MRSI-detectable KB within tumor tissue and/or normal appearing white matter (NAWM). It was detected in 4/11 patients in Group A and in 0/8 patients in Group B. MRSI results showed no significant depletion of ATP in tumor tissue of patients at day 6 during crKD-IF, even though there were a significant difference in ketone serum levels between Group A and B at day 6 and a decline in fasting glucose in Group A from baseline to day 6. The tumor specific alkaline pHi was maintained. Conclusions: Our metabolic findings suggest that tumor cells maintain energy homeostasis even with reduced serum glucose levels and may generate additional ATP through other sources.r sources.
Brain metastases are the most common intracranial tumor in adults and are associated with poor patient prognosis and median survival of only a few months. Treatment options for brain metastasis patients remain limited and largely depend on surgical resection, radio- and/or chemotherapy. The development and pre-clinical testing of novel therapeutic strategies require reliable experimental models and diagnostic tools that closely mimic technologies that are used in the clinic and reflect histopathological and biochemical changes that distinguish tumor progression from therapeutic response. In this study, we sought to test the applicability of magnetic resonance (MR) spectroscopy in combination with MR imaging to closely monitor therapeutic efficacy in a breast-to-brain metastasis model. Given the importance of radiotherapy as the standard of care for the majority of brain metastases patients, we chose to monitor the post-irradiation response by magnetic resonance spectroscopy (MRS) in combination with MR imaging (MRI) using a 7 Tesla small animal scanner. Radiation was applied as whole brain radiotherapy (WBRT) using the image-guided Small Animal Radiation Research Platform (SARRP). Here we describe alterations in different metabolites, including creatine and N-acetylaspartate, that are characteristic for brain metastases progression and lactate, which indicates hypoxia, while choline levels remained stable. Radiotherapy resulted in normalization of metabolite levels indicating tumor stasis or regression in response to treatment. Our data indicate that the use of MR spectroscopy in addition to MRI represents a valuable tool to closely monitor not only volumetrical but also metabolic changes during tumor progression and to evaluate therapeutic efficacy of intervention strategies. Adapting the analytical technology in brain metastasis models to those used in clinical settings will increase the translational significance of experimental evaluation and thus contribute to the advancement of pre-clinical assessment of novel therapeutic strategies to improve treatment options for brain metastases patients.
Amide proton transfer-chemical exchange saturation transfer (APT-CEST) imaging provides important information for the diagnosis and monitoring of tumors. For such analysis, complete coverage of the brain is advantageous, especially when registration is performed with other magnetic resonance (MR) modalities, such as MR spectroscopy (MRS). However, the acquisition of Z-spectra across several slices via multislice imaging may be time-consuming. Therefore, in this paper, we present a new approach for fast multislice imaging, allowing us to acquire 16 slices per frequency offset within 8 s. The proposed fast CEST-EPI sequence employs a presaturation module, which drives the magnetization into the steady-state equilibrium for the first frequency offset. A second module, consisting of a single CEST pulse (for maintaining the steady-state) followed by an EPI acquisition, passes through a loop to acquire multiple slices and adjacent frequency offsets. Thus, the whole Z-spectrum can be recorded much faster than the conventional saturation scheme, which employs a presaturation for each single frequency offset. The validation of the CEST sequence parameters was performed by using the conventional saturation scheme. Subsequently, the proposed and a modified version of the conventional CEST sequence were compared in vitro on a phantom with different T1 times and in vivo on a brain tumor patient. No significant differences between both sequences could be found in vitro. The in vivo data yielded almost identical MTRasym contrasts for the white and gray matter as well as for tumor tissue. Our results show that the proposed fast CEST-EPI sequence allows for rapid data acquisition and provides similar CEST contrasts as the modified conventional scheme while reducing the scanning time by approximately 50%.
Background: Alzheimer’s disease (AD) is the most common form of dementia, and it affects more women than men. Mitochondrial dysfunction (MD) plays a key role in AD, and it is detectable at an early stage of the degenerative process in peripheral tissues, such as peripheral mononuclear blood cells (PBMCs). However, whether these changes are also reflected in cerebral energy metabolism and whether sex-specific differences in mitochondrial function occur are not clear. Therefore, we estimated the correlation between mitochondrial function in PBMCs and brain energy metabolites and examined sex-specific differences in healthy participants to elucidate these issues.
Methods: The current pilot study included 9 male and 15 female healthy adults (mean age 30.8 ± 7.1 years). Respiration and activity of mitochondrial respiratory complexes were measured using a Clarke-electrode (Oxygraph-2k system), and adenosine triphosphate (ATP) levels were determined using a bioluminescence-based assay in isolated PBMCs. Citrate synthase activity as a mitochondrial marker was measured using a photometric assay. Concentrations of brain energy metabolites were quantified in the same individuals using 1H-magnetic resonance spectroscopy (MRS).
Results: We detected sex-associated differences in mitochondrial function. Mitochondrial complexes I, I+II, and IV and uncoupled respiration and electron transport system (ETS) capacity in PBMCs isolated from blood samples of females were significantly (p < 0.05; p < 0.01) higher compared to males. ATP levels in the PBMCs of female participants were approximately 10% higher compared to males. Citrate synthase (CS) activity, a marker of mitochondrial content, was significantly (p < 0.05) higher in females compared to males. Sex-associated differences were also found for brain metabolites. The N-acetylaspartate (NAA) concentration was significantly higher in female participants compared to males in targeted regions. This difference was observed in white matter (WM) and an area with a high percentage (> 50%) of gray matter (GM) (p < 0.05; p < 0.01). The effect sizes indicated a strong influence of sex on these parameters. Sex-associated differences were found in PBMCs and brain, but the determined parameters were not significantly correlated.
Conclusions: Our study revealed sex-associated differences in mitochondrial function in healthy participants. The underlying mechanisms must be elucidated in more detail, but our study suggests that mitochondrial function in PBMCs is a feasible surrogate marker to detect differences in mitochondrial function and energy metabolism in humans and it underscores the necessity of sex-specific approaches in therapies that target mitochondrial dysfunction.
BACKGROUND: hysical activity exerts a variety of long-term health benefits in older adults. In particular, it is assumed to be a protective factor against cognitive decline and dementia.
METHODS/DESIGN: Randomised controlled assessor blinded 2-armed trial (n = 60) to explore the exercise- induced neuroprotective and metabolic effects on the brain in cognitively healthy older adults. Participants (age ≥ 65), recruited within the setting of assisted living facilities and newspaper advertisements are allocated to a 12-week individualised aerobic exercise programme intervention or a 12-week waiting control group. Total follow-up is 24 weeks. The main outcome is the change in cerebral metabolism as assessed with Magnetic Resonance Spectroscopic Imaging reflecting changes of cerebral N-acetyl-aspartate and of markers of neuronal energy reserve. Imaging also measures changes in cortical grey matter volume. Secondary outcomes include a broad range of psychometric (cognition) and movement-related parameters such as nutrition, history of physical activity, history of pain and functional diagnostics. Participants are allocated to either the intervention or control group using a computer-generated randomisation sequence. The exercise physiologist in charge of training opens sealed and opaque envelopes and informs participants about group allocation. For organisational reasons, he schedules the participants for upcoming assessments and exercise in groups of five. All assessors and study personal other than exercise physiologists are blinded.
DISCUSSION: Magnetic Resonance Spectroscopic Imaging gives a deeper insight into mechanisms of exercise-induced changes in brain metabolism. As follow-up lasts for 6 months, this study is able to explore the mid-term cerebral metabolic effects of physical activity assuming that an individually tailored aerobic ergometer training has the potential to counteract brain ageing.
NCT02343029 (clinicaltrials.gov; 12 January 2015).
There is mounting evidence that aerobic exercise has a positive effect on cognitive functions in older adults. To date, little is known about the neurometabolic and molecular mechanisms underlying this positive effect. The present study used magnetic resonance spectroscopy and quantitative MRI to systematically explore the effects of physical activity on human brain metabolism and grey matter (GM) volume in healthy aging. This is a randomised controlled assessor-blinded two-armed trial (n=53) to explore exercise-induced neuroprotective and metabolic effects on the brain in cognitively healthy older adults. Participants (age >65) were allocated to a 12-week individualised aerobic exercise programme intervention (n=29) or a 12-week waiting control group (n=24). The main outcomes were the change in cerebral metabolism and its association to brain-derived neurotrophic factor (BDNF) levels as well as changes in GM volume. We found that cerebral choline concentrations remained stable after 12 weeks of aerobic exercise in the intervention group, whereas they increased in the waiting control group. No effect of training was seen on cerebral N-acetyl-aspartate concentrations, nor on markers of neuronal energy reserve or BDNF levels. Further, we observed no change in cortical GM volume in response to aerobic exercise. The finding of stable choline concentrations in the intervention group over the 3 month period might indicate a neuroprotective effect of aerobic exercise. Choline might constitute a valid marker for an effect of aerobic exercise on cerebral metabolism in healthy aging.
Highlights
• Increased values in SVD, suggesting reduced oxygen extraction fraction (OEF).
• Vascular dysfunction and microstructural impairment limit OEF capacity.
• Association between prolonged and more alkaline intracellular pH.
• Adaptation of intracellular energy metabolism compensates for reduced OEF.
Abstract
Background: We aimed to investigate whether combined phosphorous (31P) magnetic resonance spectroscopic imaging (MRSI) and quantitative T′2 mapping are able to detect alterations of the cerebral oxygen extraction fraction (OEF) and intracellular pH (pHi) as markers the of cellular energy metabolism in cerebral small vessel disease (SVD).
Materials and methods: 32 patients with SVD and 17 age-matched healthy control subjects were examined with 3-dimensional 31P MRSI and oxygenation-sensitive quantitative T′2 mapping (1/T′2 = 1/T2* - 1/T2) at 3 Tesla (T). PHi was measured within the white matter hyperintensities (WMH) in SVD patients. Quantitative T′2 values were averaged across the entire white matter (WM). Furthermore, T′2 values were extracted from normal-appearing WM (NAWM) and the WMH and compared between patients and controls.
Results: Quantitative T′2 values were significantly increased across the entire WM and in the NAWM in patients compared to control subjects (149.51 ± 16.94 vs. 138.19 ± 12.66 ms and 147.45 ± 18.14 vs. 137.99 ± 12.19 ms, p < 0.05). WM T′2 values correlated significantly with the WMH load (ρ=0.441, p = 0.006). Increased T′2 was significantly associated with more alkaline pHi (ρ=0.299, p < 0.05). Both T′2 and pHi were significantly positively correlated with vascular pulsatility in the distal carotid arteries (ρ=0.596, p = 0.001 and ρ=0.452, p = 0.016).
Conclusions: This exploratory study found evidence of impaired cerebral OEF in SVD, which is associated with intracellular alkalosis as an adaptive mechanism. The employed techniques provide new insights into the pathophysiology of SVD with regard to disease-related consequences on the cellular metabolic state.
Mutations in the PINK1 gene cause autosomal recessive familial Parkinson’s disease (PD). The gene encodes a mitochondrial protein kinase that plays an important role in maintaining mitochondrial function and integrity. However, the pathophysiological link between mutation-related bioenergetic deficits and the degenerative process in dopaminergic neurons remains to be elucidated. We performed phosphorous (31P) and proton (1H) 3-T magnetic resonance spectroscopic imaging (MRSI) in 11 members of a German family with hereditary PD due to PINK1 mutations (PARK6) compared to 23 age-matched controls. All family members had prior 18-Fluorodopa (FDOPA) positron emission tomography (PET). The striatal FDOPA uptake was correlated with quantified metabolic brain mapping in MRSI. At group level, the heterozygous PINK1 mutation carriers did not show any MRSI abnormalities relative to controls. In contrast, homozygous individuals with manifest PD had putaminal GPC, PCr, HEP and β-ATP levels well above the 2SD range of controls. Across all subjects, the FDOPA Ki values correlated positively with MI (r = 0.879, p<0.001) and inversely with β-ATP (r = −0.784, p = 0.008) and GPC concentrations (r = −0.651, p = 0.030) in the putamen. Our combined imaging data suggest that the dopaminergic deficit in this family with PD due to PINK1 mutations relates to osmolyte dysregulation, while the delivery of high energy phosphates was preserved. Our results corroborate the hypothesis that PINK1 mutations result in reduced neuronal survival, most likely due to impaired cellular stress resistance.
Simple Summary: Targeted therapies are of growing interest to physicians in cancer treatment. These drugs target specific genes and proteins involved in the growth and survival of cancer cells. Brain tumor therapy is complicated by the fact that not all drugs can penetrate the blood brain barrier and reach their target. We explored the non-invasive method, Magnetic Resonance Spectroscopy, for monitoring drug penetration and its effects in live animals bearing brain tumors. We were able to show the presence of the investigated drug in mouse brains and its on-target activity.
Abstract: Background: BAY1436032 is a fluorine-containing inhibitor of the R132X-mutant isocitrate dehydrogenase (mIDH1). It inhibits the mIDH1-mediated production of 2-hydroxyglutarate (2-HG) in glioma cells. We investigated brain penetration of BAY1436032 and its effects using 1H/19F-Magnetic Resonance Spectroscopy (MRS). Methods: 19F-Nuclear Magnetic Resonance (NMR) Spectroscopy was conducted on serum samples from patients treated with BAY1436032 (NCT02746081 trial) in order to analyze 19F spectroscopic signal patterns and concentration-time dynamics of protein-bound inhibitor to facilitate their identification in vivo MRS experiments. Hereafter, 30 mice were implanted with three glioma cell lines (LNT-229, LNT-229 IDH1-R132H, GL261). Mice bearing the IDH-mutated glioma cells received 5 days of treatment with BAY1436032 between baseline and follow-up 1H/19F-MRS scan. All other animals underwent a single scan after BAY1436032 administration. Mouse brains were analyzed by liquid chromatography-mass spectrometry (LC-MS/MS). Results: Evaluation of 1H-MRS data showed a decrease in 2-HG/total creatinine (tCr) ratios from the baseline to post-treatment scans in the mIDH1 murine model. Whole brain concentration of BAY1436032, as determined by 19F-MRS, was similar to total brain tissue concentration determined by Liquid Chromatography with tandem mass spectrometry (LC-MS/MS), with a signal loss due to protein binding. Intratumoral drug concentration, as determined by LC-MS/MS, was not statistically different in models with or without R132X-mutant IDH1 expression. Conclusions: Non-invasive monitoring of mIDH1 inhibition by BAY1436032 in mIDH1 gliomas is feasible.
Background: Antiangiogenic treatment of glioblastomas with Bevacizumab lacks predictive markers. Myoinositol (MI) is an organic osmolyte, with intracellular concentration changes depending on the extracellular osmolality. Since Bevacizumab markedly reduces tumor edema and influences the tumor microenvironment, we investigated whether the MI concentration in the tumor changes during therapy.
Methods: We used 1H-magnetic resonance spectroscopy to measure the MI concentrations in the tumor and contralateral control tissue of 39 prospectively recruited patients with recurrent glioblastomas before and 8–12 weeks after starting therapy. 30 patients received Bevacizumab and 9 patients were treated with CCNU/VM26 as control. We performed a survival analysis to evaluate MI as a predictive biomarker for Bevacizumab therapy.
Results: MI concentrations increased significantly during Bevacizumab therapy in tumor (p < .001) and control tissue (p = .001), but not during CCNU/VM26 treatment. For the Bevacizumab cohort, higher MI concentrations in the control tissue at baseline (p = .021) and higher differences between control and tumor tissue (delta MI, p = .011) were associated with longer survival. A Kaplan-Meier analysis showed a median OS of 164 days for patients with a deltaMI < 1,817 mmol/l and 275 days for patients with a deltaMI > 1,817 mmol/l. No differences were observed for the relative changes or the post treatment concentrations. Additionally calculated creatine concentrations showed no differences in between subgroups or between pre and post treatment measurements.
Conclusion: Our data suggest that recurrent glioblastoma shows a strong metabolic reaction to Bevacizumab. Further, our results support the hypothesis that MI might be a marker for early tumor cell invasion. Pre-therapeutic MI concentrations are predictive of overall survival in patients with recurrent glioblastoma treated with Bevacizumab.