Refine
Document Type
- Article (17)
Language
- English (17)
Has Fulltext
- yes (17)
Is part of the Bibliography
- no (17)
Keywords
- quantitative MRI (4)
- epilepsy (3)
- brain imaging (2)
- glioblastoma (2)
- Cannabis (1)
- Cellular energy metabolism (1)
- Cerebral hypoperfusion (1)
- Clincial pharmacology (1)
- Cortical degeneration (1)
- Cortical thickness (1)
Cortical changes in epilepsy patients with focal cortical dysplasia: new insights with T2 mapping
(2020)
Background: In epilepsy patients with focal cortical dysplasia (FCD) as the epileptogenic focus, global cortical signal changes are generally not visible on conventional MRI. However, epileptic seizures or antiepileptic medication might affect normal-appearing cerebral cortex and lead to subtle damage. Purpose: To investigate cortical properties outside FCD regions with T2-relaxometry. Study Type: Prospective study. Subjects: Sixteen patients with epilepsy and FCD and 16 age-/sex-matched healthy controls. Field Strength/Sequence: 3T, fast spin-echo T2-mapping, fluid-attenuated inversion recovery (FLAIR), and synthetic T1-weighted magnetization-prepared rapid acquisition of gradient-echoes (MP-RAGE) datasets derived from T1-maps. Assessment: Reconstruction of the white matter and cortical surfaces based on MP-RAGE structural images was performed to extract cortical T2 values, excluding lesion areas. Three independent raters confirmed that morphological cortical/juxtacortical changes in the conventional FLAIR datasets outside the FCD areas were definitely absent for all patients. Averaged global cortical T2 values were compared between groups. Furthermore, group comparisons of regional cortical T2 values were performed using a surface-based approach. Tests for correlations with clinical parameters were carried out. Statistical Tests: General linear model analysis, permutation simulations, paired and unpaired t-tests, and Pearson correlations. Results: Cortical T2 values were increased outside FCD regions in patients (83.4 ± 2.1 msec, control group 81.4 ± 2.1 msec, P = 0.01). T2 increases were widespread, affecting mainly frontal, but also parietal and temporal regions of both hemispheres. Significant correlations were not observed (P ≥ 0.55) between cortical T2 values in the patient group and the number of seizures in the last 3 months or the number of anticonvulsive drugs in the medical history. Data Conclusion: Widespread increases in cortical T2 in FCD-associated epilepsy patients were found, suggesting that structural epilepsy in patients with FCD is not only a symptom of a focal cerebral lesion, but also leads to global cortical damage not visible on conventional MRI. Evidence Level: 21. Technical efficacy Stage: 3 J. MAGN. RESON. IMAGING 2020;52:1783–1789.
Purpose: To investigate cortical thickness and cortical quantitative T2 values as imaging markers of microstructural tissue damage in patients with unilateral high-grade internal carotid artery occlusive disease (ICAOD).
Methods: A total of 22 patients with ≥70% stenosis (mean age 64.8 years) and 20 older healthy control subjects (mean age 70.8 years) underwent structural magnetic resonance imaging (MRI) and high-resolution quantitative (q)T2 mapping. Generalized linear mixed models (GLMM) controlling for age and white matter lesion volume were employed to investigate the effect of ICAOD on imaging parameters of cortical microstructural integrity in multivariate analyses.
Results: There was a significant main effect (p < 0.05) of the group (patients/controls) on both cortical thickness and cortical qT2 values with cortical thinning and increased cortical qT2 in patients compared to controls, irrespective of the hemisphere. The presence of upstream carotid stenosis had a significant main effect on cortical qT2 values (p = 0.01) leading to increased qT2 in the poststenotic hemisphere, which was not found for cortical thickness. The GLMM showed that in general cortical thickness was decreased and cortical qT2 values were increased with increasing age (p < 0.05).
Conclusion: Unilateral high-grade carotid occlusive disease is associated with widespread cortical thinning and prolongation of cortical qT2, presumably reflecting hypoperfusion-related microstructural cortical damage similar to accelerated aging of the cerebral cortex. Cortical thinning and increase of cortical qT2 seem to reflect different aspects and different pathophysiological states of cortical degeneration. Quantitative T2 mapping might be a sensitive imaging biomarker for early cortical microstructural damage.
Background: Cannabis proofed to be effective in pain relief, but one major side effect is its influence on memory in humans. Therefore, the role of memory on central processing of nociceptive information was investigated in healthy volunteers.
Methods: In a placebo-controlled cross-over study including 22 healthy subjects, the effect of 20 mg oral Δ9-tetrahydrocannabinol (THC) on memory involving nociceptive sensations was studied, using a delayed stimulus discrimination task (DSDT). To control for nociceptive specificity, a similar DSDT-based study was performed in a subgroup of thirteen subjects, using visual stimuli.
Results: For each nociceptive stimulus pair, the second stimulus was associated with stronger and more extended brain activations than the first stimulus. These differences disappeared after THC administration. The THC effects were mainly located in two clusters comprising the insula and inferior frontal cortex in the right hemisphere, and the caudate nucleus and putamen bilaterally. These cerebral effects were accompanied in the DSDT by a significant reduction of correct ratings from 41.61% to 37.05% after THC administration (rm-ANOVA interaction "drug" by "measurement": F (1,21) = 4.685, p = 0.042). Rating performance was also reduced for the visual DSDT (69.87% to 54.35%; rm-ANOVA interaction of "drug" by "measurement": F (1,12) = 13.478, p = 0.003) and reflected in a reduction of stimulus-related brain deactivations in the bilateral angular gyrus.
Conclusions: Results suggest that part of the effect of THC on pain may be related to memory effects. THC reduced the performance in DSDT of nociceptive and visual stimuli, which was accompanied by significant effects on brain activations. However, a pain specificity of these effects cannot be deduced from the data presented.
Oxygenation-sensitive spin relaxation time T2′ and relaxation rate R2′ (1/T2′) are presumed to be markers of the cerebral oxygen extraction fraction (OEF) in acute ischemic stroke. In this study, we investigate the relationship of T2′/R2′ with dynamic susceptibility contrast-based relative cerebral blood flow (rCBF) in acute ischemic stroke to assess their plausibility as surrogate markers of the ischemic penumbra. Twenty-one consecutive patients with internal carotid artery and/or middle cerebral artery occlusion were studied at 3.0 T. A physiological model of the cerebral vasculature (VM) was used to process PWI raw data in addition to a conventional deconvolution technique. T2′, R2′, and rCBF values were extracted from the ischemic core and hypoperfused areas. Within hypoperfused tissue, no correlation was found between deconvolved rCBF and T2′ (r = −0.05, p = 0.788), or R2′ (r = 0.039, p = 0.836). In contrast, we found a strong positive correlation with T2′ (r = 0.444, p = 0.006) and negative correlation with R2′ (r = −0.494, p = 0.0025) for rCBFVM, indicating increasing OEF with decreasing CBF and that rCBF based on the vascular model may be more closely related to metabolic disturbances. Further research to refine and validate these techniques may enable their use as MRI-based surrogate markers of the ischemic penumbra for selecting stroke patients for interventional treatment strategies.
Acupuncture is a therapy based on sensory stimulation of the human
body by means of metal needles. The exact underlying mechanisms of
acupuncture have not been clarified so far. Functional magnetic
resonance imaging (fMRI) has become an important tool in
acupuncture research. Standard acupuncture needles, which are made
of ferromagnetic steel, however, are problematic in
acupuncture-fMRI studies for several reasons, such as attraction
by the scanner's magnetic field, significant image distortions and
signal-dropouts, when positioned close to the head or even heating
due to absorption of radio frequency (RF). The aim of this study
was to compare two novel types of acupuncture needles with a
standard needle for their effect on MRI image quality. The
standard needle severely reduced image quality, when located
inside the RF coil. The nonferromagnetic metal needle may pose a
risk due to RF heating, while the plastic needle has a
significantly larger diameter. In conclusion, our recommendations
are: (1) standard needles should not be used in MRI; (2)
Nonferromagnetic metal needles seem to be the best choice for
acupoints outside of the transmitter coil; and (3) only plastic
needles are suited for points inside the coil. Laser acupuncture
may be a safe alternative, too.
Quantitative MRI allows to probe tissue properties by measuring relaxation times and may thus detect subtle changes in tissue composition. In this work we analyzed different relaxation times (T1, T2, T2* and T2′) and histological features in 321 samples that were acquired from 25 patients with newly diagnosed IDH wild-type glioma. Quantitative relaxation times before intravenous application of gadolinium-based contrast agent (GBCA), T1 relaxation time after GBCA as well as the relative difference between T1 relaxation times pre-to-post GBCA (T1rel) were compared with histopathologic features such as the presence of tumor cells, cell and vessel density, endogenous markers for hypoxia and cell proliferation. Image-guided stereotactic biopsy allowed for the attribution of each tissue specimen to its corresponding position in the respective relaxation time map. Compared to normal tissue, T1 and T2 relaxation times and T1rel were prolonged in samples containing tumor cells. The presence of vascular proliferates was associated with higher T1rel values. Immunopositivity for lactate dehydrogenase A (LDHA) involved slightly longer T1 relaxation times. However, low T2′ values, suggesting high amounts of deoxyhemoglobin, were found in samples with elevated vessel densities, but not in samples with increased immunopositivity for LDHA. Taken together, some of our observations were consistent with previous findings but the correlation of quantitative MRI and histologic parameters did not confirm all our pathophysiology-based assumptions.
Magnetic resonance imaging (MRI) is the gold standard imaging technique for diagnosis and monitoring of many neurological diseases. However, the application of conventional MRI in clinical routine is mainly limited to the visual detection of macroscopic tissue pathology since mixed tissue contrasts depending on hardware and protocol parameters hamper its application for the assessment of subtle or diffuse impairment of the structural tissue integrity. Multiparametric quantitative (q)MRI determines tissue parameters quantitatively, enabling the detection of microstructural processes related to tissue remodeling in aging and neurological diseases. In contrast to measuring tissue atrophy via structural imaging, multiparametric qMRI allows for investigating biologically distinct microstructural processes, which precede changes of the tissue volume. This facilitates a more comprehensive characterization of tissue alterations by revealing early impairment of the microstructural integrity and specific disease-related patterns. So far, qMRI techniques have been employed in a wide range of neurological diseases, including in particular conditions with inflammatory, cerebrovascular and neurodegenerative pathology. Numerous studies suggest that qMRI might add valuable information, including the detection of microstructural tissue damage in areas appearing normal on conventional MRI and unveiling the microstructural correlates of clinical manifestations. This review will give an overview of current qMRI techniques, the most relevant tissue parameters and potential applications in neurological diseases, such as early (differential) diagnosis, monitoring of disease progression, and evaluating effects of therapeutic interventions.
Purpose: In the clinical routine, detection of focal cortical dysplasia (FCD) by visual inspection is challenging. Still, information about the presence and location of FCD is highly relevant for prognostication and treatment decisions. Therefore, this study aimed to develop, describe and test a method for the calculation of synthetic anatomies using multiparametric quantitative MRI (qMRI) data and surface-based analysis, which allows for an improved visualization of FCD.
Materials and Methods: Quantitative T1-, T2- and PD-maps and conventional clinical datasets of patients with FCD and epilepsy were acquired. Tissue segmentation and delineation of the border between white matter and cortex was performed. In order to detect blurring at this border, a surface-based calculation of the standard deviation of each quantitative parameter (T1, T2, and PD) was performed across the cortex and the neighboring white matter for each cortical vertex. The resulting standard deviations combined with measures of the cortical thickness were used to enhance the signal of conventional FLAIR-datasets. The resulting synthetically enhanced FLAIR-anatomies were compared with conventional MRI-data utilizing regions of interest based analysis techniques.
Results: The synthetically enhanced FLAIR-anatomies showed higher signal levels than conventional FLAIR-data at the FCD sites (p = 0.005). In addition, the enhanced FLAIR-anatomies exhibited higher signal levels at the FCD sites than in the corresponding contralateral regions (p = 0.005). However, false positive findings occurred, so careful comparison with conventional datasets is mandatory.
Conclusion: Synthetically enhanced FLAIR-anatomies resulting from surface-based multiparametric qMRI-analyses have the potential to improve the visualization of FCD and, accordingly, the treatment of the respective patients.
Quantitative T1 mapping indicates tumor infiltration beyond the enhancing part of glioblastomas
(2019)
The aim of this study was to evaluate whether maps of quantitative T1 (qT1) differences induced by a gadolinium‐based contrast agent (CA) are better suited than conventional T1‐weighted (T1w) MR images for detecting infiltration inside and beyond the peritumoral edema of glioblastomas. Conventional T1w images and qT1 maps were obtained before and after gadolinium‐based CA administration in 33 patients with glioblastoma before therapy. The following data were calculated: (i) absolute qT1‐difference maps (qT1 pre‐CA ‐ qT1 post‐CA), (ii) relative qT1‐difference maps, (iii) absolute and (iv) relative differences of conventional T1w images acquired pre‐ and post‐CA. The values of these four datasets were compared in four different regions: (a) the enhancing tumor, (b) the peritumoral edema, (c) a 5 mm zone around the pathology (defined as the sum of regions a and b), and (d) the contralateral normal appearing brain tissue. Additionally, absolute qT1‐difference maps (displayed with linear gray scaling) were visually compared with respective conventional difference images. The enhancing tumor was visible both in the difference of conventional pre‐ and post‐CA T1w images and in the absolute qT1‐difference maps, whereas only the latter showed elevated values in the peritumoral edema and in some cases even beyond. Mean absolute qT1‐difference values were significantly higher (P < 0.01) in the enhancing tumor (838 ± 210 ms), the peritumoral edema (123 ± 74 ms) and in the 5 mm zone around the pathology (81 ± 31 ms) than in normal appearing tissue (32 ± 35 ms). In summary, absolute qT1‐difference maps—in contrast to the difference of T1w images—of untreated glioblastomas appear to be able to visualize CA leakage, and thus might indicate tumor cell infiltration in the edema region and beyond. Therefore, the absolute qT1‐difference maps are potentially useful for treatment planning.
Our ability to select relevant information from the environment is limited by the resolution of attention – i.e., the minimum size of the region that can be selected. Neural mechanisms that underlie this limit and its development are not yet understood. Functional magnetic resonance imaging (fMRI) was performed during an object tracking task in 7- and 11-year-old children, and in young adults. Object tracking activated canonical fronto-parietal attention systems and motion-sensitive area MT in children as young as 7 years. Object tracking performance improved with age, together with stronger recruitment of parietal attention areas and a shift from low-level to higher-level visual areas. Increasing the required resolution of spatial attention – which was implemented by varying the distance between target and distractors in the object tracking task – led to activation increases in fronto-insular cortex, medial frontal cortex including anterior cingulate cortex (ACC) and supplementary motor area, superior colliculi, and thalamus. This core circuitry for attentional precision was recruited by all age groups, but ACC showed an age-related activation reduction. Our results suggest that age-related improvements in selective visual attention and in the resolution of attention are characterized by an increased use of more functionally specialized brain regions during the course of development.