Refine
Document Type
- Article (5)
Language
- English (5)
Has Fulltext
- yes (5)
Is part of the Bibliography
- no (5)
Keywords
- 2-aminobenzimidazole (1)
- Covid19-nmr (1)
- DNA conjugate (1)
- DNA recognition (1)
- DNA/LNA mixmers (1)
- EPR (1)
- NMR spectroscopy (1)
- PELDOR (1)
- RNA (1)
- RNA induced silencing complex (1)
SARS-CoV-2 contains a positive single-stranded RNA genome of approximately 30 000 nucleotides. Within this genome, 15 RNA elements were identified as conserved between SARS-CoV and SARS-CoV-2. By nuclear magnetic resonance (NMR) spectroscopy, we previously determined that these elements fold independently, in line with data from in vivo and ex-vivo structural probing experiments. These elements contain non-base-paired regions that potentially harbor ligand-binding pockets. Here, we performed an NMR-based screening of a poised fragment library of 768 compounds for binding to these RNAs, employing three different 1H-based 1D NMR binding assays. The screening identified common as well as RNA-element specific hits. The results allow selection of the most promising of the 15 RNA elements as putative drug targets. Based on the identified hits, we derive key functional units and groups in ligands for effective targeting of the RNA of SARS-CoV-2.
TEMPO spin labels protected with 2-nitrobenzyloxymethyl groups were attached to the amino residues of three different nucleosides: deoxycytidine, deoxyadenosine, and adenosine. The corresponding phosphoramidites could be incorporated by unmodified standard procedures into four different self-complementary DNA and two RNA oligonucleotides. After photochemical removal of the protective group, elimination of formic aldehyde and spontaneous air oxidation, the nitroxide radicals were regenerated in high yield. The resulting spin-labeled palindromic duplexes could be directly investigated by PELDOR spectroscopy without further purification steps. Spin–spin distances measured by PELDOR correspond well to the values obtained from molecular models.
Site-specific cleavage of RNAs derived from the PIM1 3′-UTR by a metal-free artificial ribonuclease
(2019)
Oligonucleotide conjugates of tris(2-aminobenzimidazole) have been reported previously to cleave complementary RNA strands with high levels of sequence and site specificity. The RNA substrates used in these studies were oligonucleotides not longer than 29-mers. Here we show that ~150–400-mer model transcripts derived from the 3′-untranslated region of the PIM1 mRNA reacted with rates and specificities comparable to those of short oligonucleotide substrates. The replacement of DNA by DNA/LNA mixmers further increased the cleavage rate. Tris(2-aminobenzimidazoles) were designed to interact with phosphates and phosphate esters. A cell, however, contains large amounts of phosphorylated species that may cause competitive inhibition of RNA cleavage. It is thus important to note that no loss in reaction rates was observed in phosphate buffer. This opens the way to in-cell applications for this type of artificial nuclease. Furthermore, we disclose a new synthetic method giving access to tris(2-aminobenzimidazoles) in multigram amounts.
Redirection of miRNA‐argonaute complexes to specific target sites by synthetic adaptor molecules
(2020)
Dysregulation of miRNAs is connected with a multitude of diseases for which antagomirs and miRNA replacement are discussed as therapeutic options. Here, we suggest an alternative concept based on the redirection of RISCs to non‐native target sites. Metabolically stable DNA‐LNA mixmers are used to mediate the binding of RISCs to mRNAs without any direct base complementarity to the presented guide RNA strand. Physical redirection of a dye‐labeled miRNA model and of specific miRNA‐programmed RISC fractions present in HeLa extracts is demonstrated by pull‐down experiments with biotinylated capture oligonucleotides.
Redirection of the transcription factor SP1 to AT rich binding sites by a synthetic adaptor molecule
(2021)
The ubiquitous transcription factor SP1 binds to a GC rich consensus sequence. Here we describe an adaptor molecule that mediates binding of SP1 to a non-cognate DNA site rich in AT. The adaptor is comprised of a Dervan-type hairpin polyamide with high affinity to an AT rich hexamer duplex. It also carries a 27mer DNA that contains the SP1 consensus sequence. The synthesis and purification of the polyamide-DNA conjugate is reported. Pulldown experiments and western blot analysis demonstrate adaptor mediated binding of SP1 to the hexamer duplex TTGTTA.