Refine
Language
- English (8)
Has Fulltext
- yes (8)
Is part of the Bibliography
- no (8)
Keywords
- EEG (5)
- MRI (3)
- Aging (2)
- aging (2)
- alpha power (2)
- white matter hyperintensity (2)
- Alpha power (1)
- Alpha rhythm (1)
- Aperiodic (1)
- Bandpass filters (1)
Institute
Spatial neuronal synchronization and the waveform of oscillations : implications for EEG and MEG
(2019)
Neuronal oscillations are ubiquitous in the human brain and are implicated in virtually all brain functions. Although they can be described by a prominent peak in the power spectrum, their waveform is not necessarily sinusoidal and shows rather complex morphology. Both frequency and temporal descriptions of such non-sinusoidal neuronal oscillations can be utilized. However, in non-invasive EEG/MEG recordings the waveform of oscillations often takes a sinusoidal shape which in turn leads to a rather oversimplified view on oscillatory processes. In this study, we show in simulations how spatial synchronization can mask non-sinusoidal features of the underlying rhythmic neuronal processes. Consequently, the degree of non-sinusoidality can serve as a measure of spatial synchronization. To confirm this empirically, we show that a mixture of EEG components is indeed associated with more sinusoidal oscillations compared to the waveform of oscillations in each constituent component. Using simulations, we also show that the spatial mixing of the non-sinusoidal neuronal signals strongly affects the amplitude ratio of the spectral harmonics constituting the waveform. Finally, our simulations show how spatial mixing can affect the strength and even the direction of the amplitude coupling between constituent neuronal harmonics at different frequencies. Validating these simulations, we also demonstrate these effects in real EEG recordings. Our findings have far reaching implications for the neurophysiological interpretation of spectral profiles, cross-frequency interactions, as well as for the unequivocal determination of oscillatory phase.
Relationship between regional white matter hyperintensities and alpha oscillations in older adults
(2021)
Aging is associated with increased white matter hyperintensities (WMHs) and with alterations of alpha oscillations (7–13 Hz). However, a crucial question remains, whether changes in alpha oscillations relate to aging per se or whether this relationship is mediated by age-related neuropathology like WMHs. Using a large cohort of cognitively healthy older adults (N = 907, 60–80 years), we assessed relative alpha power, alpha peak frequency, and long-range temporal correlations from resting-state EEG. We further associated these parameters with voxel-wise WMHs from 3T MRI. We found that a higher prevalence of WMHs in the superior and posterior corona radiata as well as in the thalamic radiation was related to elevated alpha power, with the strongest association in the bilateral occipital cortex. In contrast, we observed no significant relation of the WMHs probability with alpha peak frequency and long-range temporal correlations. Finally, higher age was associated with elevated alpha power via total WMH volume. We suggest that an elevated alpha power is a consequence of WMHs affecting a spatial organization of alpha sources.
Analyzing non-invasive recordings of electroencephalography (EEG) and magnetoencephalography (MEG) directly in sensor space, using the signal from individual sensors, is a convenient and standard way of working with this type of data. However, volume conduction introduces considerable challenges for sensor space analysis. While the general idea of signal mixing due to volume conduction in EEG/MEG is recognized, the implications have not yet been clearly exemplified. Here, we illustrate how different types of activity overlap on the level of individual sensors. We show spatial mixing in the context of alpha rhythms, which are known to have generators in different areas of the brain. Using simulations with a realistic 3D head model and lead field and data analysis of a large resting-state EEG dataset, we show that electrode signals can be differentially affected by spatial mixing by computing a sensor complexity measure. While prominent occipital alpha rhythms result in less heterogeneous spatial mixing on posterior electrodes, central electrodes show a diversity of rhythms present. This makes the individual contributions, such as the sensorimotor mu-rhythm and temporal alpha rhythms, hard to disentangle from the dominant occipital alpha. Additionally, we show how strong occipital rhythms rhythms can contribute the majority of activity to frontal channels, potentially compromising analyses that are solely conducted in sensor space. We also outline specific consequences of signal mixing for frequently used assessment of power, power ratios and connectivity profiles in basic research and for neurofeedback application. With this work, we hope to illustrate the effects of volume conduction in a concrete way, such that the provided practical illustrations may be of use to EEG researchers to in order to evaluate whether sensor space is an appropriate choice for their topic of investigation.
Relationship between regional white matter hyperintensities and alpha oscillations in older adults
(2020)
White matter hyperintensities (WMHs) in the cerebral white matter and attenuation of alpha oscillations (AO; 7–13 Hz) occur with the advancing age. However, a crucial question remains, whether changes in AO relate to aging per se or they rather reflect the impact of age-related neuropathology like WMHs. In this study, using a large cohort (N=907) of elderly participants (60-80 years), we assessed relative alpha power (AP), individual alpha peak frequency (IAPF) and long-range temporal correlations (LRTC) from resting-state EEG. We further associated these parameters with voxel-wise WMHs from 3T MRI. We found that higher prevalence of WMHs in the superior and posterior corona radiata was related to elevated relative AP, with strongest correlations in the bilateral occipital cortex, even after controlling for potential confounding factors. In contrast, we observed no significant relation of probability of WMH occurrence with IAPF and LRTC. We argue that the WMH-associated increase of AP reflects generalized and likely compensatory changes of AO leading to a larger number of synchronously recruited neurons.
Relationship between regional white matter hyperintensities and alpha oscillations in older adults
(2020)
Objective: To investigate whether regional white matter hyperintensities (WMHs) relate to alpha oscillations (AO) in a large population-based sample of elderly individuals.
Methods: We associated voxel-wise WMHs from high-resolution 3-Tesla MRI with neuronal alpha oscillations (AO) from resting-state multichannel EEG at sensor (N=907) and source space (N=855) in older participants of the LIFE-Adult study (60–80 years). In EEG, we computed relative alpha power (AP), individual alpha peak frequency (IAPF), as well as long-range temporal correlations (LRTC) that represent dynamic properties of the signal. We implemented whole-brain voxel-wise regression models to identify regions where parameters of AO were linked to probability of WMH occurrence. We further used mediation analyses to examine whether WMH volume mediated the relationship between age and AO.
Results: Higher prevalence of WMHs in the superior and posterior corona radiata was related to elevated relative AP, with strongest correlations in the bilateral occipital cortex, even after controlling for potential confounding factors. The age-related increase of relative AP in the right temporal brain region was shown to be mediated by total WMH volume.
Conclusion: A high relative AP corresponding to increased regional WMHs was not associated with age per se, in fact, this relationship was mediated by WMHs. We argue that the WMH-associated increase of AP reflects a generalized and likely compensatory spread of AO leading to a larger number of synchronously recruited neurons. Our findings thus suggest that longitudinal EEG recordings might be sensitive to detect functional changes due to WMHs.
Analyzing non-invasive recordings of electroencephalography (EEG) and magnetoencephalography (MEG) directly in sensor space, using the signal from individual sensors, is a convenient and standard way of working with this type of data. However, volume conduction introduces considerable challenges for sensor space analysis. While the general idea of signal mixing due to volume conduction in EEG/MEG is recognized, the implications have not yet been clearly exemplified. Here, we illustrate how different types of activity overlap on the level of individual sensors. We show spatial mixing in the context of alpha rhythms, which are known to have generators in different areas of the brain. Using simulations with a realistic 3D head model and lead field and data analysis of a large resting-state EEG dataset, we show that electrode signals can be differentially affected by spatial mixing by computing a sensor complexity measure. While prominent occipital alpha rhythms result in less heterogeneous spatial mixing on posterior electrodes, central electrodes show a diversity of rhythms present. This makes the individual contributions, such as the sensorimotor mu-rhythm and temporal alpha rhythms, hard to disentangle from the dominant occipital alpha. Additionally, we show how strong occipital rhythms can contribute the majority of activity to frontal channels, potentially compromising analyses that are solely conducted in sensor space. We also outline specific consequences of signal mixing for frequently used assessment of power, power ratios and connectivity profiles in basic research and for neurofeedback application. With this work, we hope to illustrate the effects of volume conduction in a concrete way, such that the provided practical illustrations may be of use to EEG researchers to in order to evaluate whether sensor space is an appropriate choice for their topic of investigation.
Relationship between regional white matter hyperintensities and alpha oscillations in older adults
(2021)
Aging is associated with increased white matter hyperintensities (WMHs) and with the alterations of alpha oscillations (7–13 Hz). However, a crucial question remains, whether changes in alpha oscillations relate to aging per se or whether this relationship is mediated by age-related neuropathology like WMHs. Using a large cohort of cognitively healthy older adults (N=907, 60-80 years), we assessed relative alpha power, alpha peak frequency, and long-range temporal correlations (LRTC) from resting-state EEG. We further associated these parameters with voxel-wise WMHs from 3T MRI. We found that a higher prevalence of WMHs in the superior and posterior corona radiata as well as in the thalamic radiation was related to elevated alpha power, with the strongest association in the bilateral occipital cortex. In contrast, we observed no significant relation of the WMHs probability with alpha peak frequency and LRTC. Finally, higher age was associated with elevated alpha power via total WMH volume. Although an increase in alpha oscillations due to WMH can have a compensatory nature, we rather suggest that an elevated alpha power is a consequence of WMH affecting a spatial organization of alpha sources.
Highlights
• A big dataset reveals age-related alterations in EEG biomarkers and cognition.
• Prominent decline of individual alpha peak frequency primarily in temporal lobes.
• A positive association between individual alpha peak frequency and working memory.
• Absence of age-related alpha power decline when controlling for 1/f decay of the PSD.
• Alpha power is negatively associated with the speed of processing in elderly sample.
Abstract
While many structural and biochemical changes in the brain have previously been associated with older age, findings concerning functional properties of neuronal networks, as reflected in their electrophysiological signatures, remain rather controversial. These discrepancies might arise due to several reasons, including diverse factors determining general spectral slowing in the alpha frequency range as well as amplitude mixing between the rhythmic and non-rhythmic parameters. We used a large dataset (N = 1703, mean age 70) to comprehensively investigate age-related alterations in multiple EEG biomarkers taking into account rhythmic and non-rhythmic activity and their individual contributions to cognitive performance. While we found strong evidence for an individual alpha peak frequency (IAF) decline in older age, we did not observe a significant relationship between theta power and age while controlling for IAF. Not only did IAF decline with age, but it was also positively associated with interference resolution in a working memory task primarily in the right and left temporal lobes suggesting its functional role in information sampling. Critically, we did not detect a significant relationship between alpha power and age when controlling for the 1/f spectral slope, while the latter one showed age-related alterations. These findings thus suggest that the entanglement of IAF slowing and power in the theta frequency range, as well as 1/f slope and alpha power measures, might explain inconsistencies reported previously in the literature. Finally, despite the absence of age-related alterations, alpha power was negatively associated with the speed of processing in the right frontal lobe while 1/f slope showed no consistent relationship to cognitive performance. Our results thus demonstrate that multiple electrophysiological features, as well as their interplay, should be considered for the comprehensive assessment of association between age, neuronal activity, and cognitive performance.