Refine
Document Type
- Article (3)
- Doctoral Thesis (1)
- Preprint (1)
Language
- English (5)
Has Fulltext
- yes (5)
Is part of the Bibliography
- no (5)
Keywords
- 3Cs technology (1)
- Crispr/Cas (1)
- DUBs (1)
- Doxorubicin (1)
- Tools and ressources (1)
- angiogenesis (1)
- autophagy (1)
- cancer (1)
- cell biology (1)
- extracellular matrix (1)
Current technologies used to generate CRISPR/Cas gene perturbation reagents are labor intense and require multiple ligation and cloning steps. Furthermore, increasing gRNA sequence diversity negatively affects gRNA distribution, leading to libraries of heterogeneous quality. Here, we present a rapid and cloning-free mutagenesis technology that can efficiently generate covalently-closed-circular-synthesized (3Cs) CRISPR/Cas gRNA reagents and that uncouples sequence diversity from sequence distribution. We demonstrate the fidelity and performance of 3Cs reagents by tailored targeting of all human deubiquitinating enzymes (DUBs) and identify their essentiality for cell fitness. To explore high-content screening, we aimed to generate the largest up-to-date gRNA library that can be used to interrogate the coding and noncoding human genome and simultaneously to identify genes, predicted promoter flanking regions, transcription factors and CTCF binding sites that are linked to doxorubicin resistance. Our 3Cs technology enables fast and robust generation of bias-free gene perturbation libraries with yet unmatched diversities and should be considered an alternative to established technologies.
Komplexe biologische Phänotypen resultieren aus einem koordinierten Zusammenspiel von einer Vielzahl von Genen. Um zu verstehen, wie Krankheiten durch genetische Dysfunktionen
entstehen können, ist es unabdingbar die genetischen Interaktionsnetzwerke in menschlichen Zellen zu entschlüsseln. Eine Identifizierung von Kontext-abhängigen genetischen Interaktionen kann bedeutende Erkenntnisse über die Beziehung von Phänotyp und Genotyp liefern und erklären, wie synergistische Gen-Funktionen die Entstehung von komplexen Krankheiten bedingen.
Gepoolte, kombinatorische CRISPR (kurz für: clustered regularly interspaced short palindromic repeats) Screens stellen eine wirkungsvolle Methode zur simultanen Untersuchung potentieller Interaktionen von einer großen Anzahl von Genen dar. Mit sogenannten multiplex CRISPR
gRNA Bibliotheken werden im Rahmen großangelegter Screens vielzählige kombinatorische Gen-Knockouts in Zellen generiert. Diese multiplex CRISPR gRNA Bibliotheken können aus bis zu hunderttausenden Plasmiden bestehen, die jeweils für eine andere gRNA-Kombination kodieren und auf ein spezifisches Gen-Paar abzielen. Im Gegensatz zu CRISPR Screens für Einzel-Knockouts gehen multiplex CRISPR Screens zur Identifizierung von genetischen Interaktionen mit zusätzlichen Herausforderungen einher: Zum einen wächst der verbundene Arbeitsaufwand für die Konstruktion der multiplex CRISPR gRNA Bibliotheken proportional mit der Anzahl der gewünschten Ziel-Gene, welche die Diversität der Bibliothek bestimmt. In einer idealen gRNA-Bibliothek wären alle gRNA-Sequenzen gleich häufig vorhanden. Jedoch weisen
gRNA-Bibliotheken aufgrund von technischen Beschränkungen gRNA-Sequenzen mit höherer, beziehungsweise niedriger Abundanz auf. Konventionelle Methoden zur Herstellung von
gRNA-Bibliotheken basieren beispielsweise auf iterativen, gepoolten Klonierungsschritten mit PCR-amplifizierten Oligonucleotiden, welche zu einer Ungleichverteilung oder zum Verlust von gRNA-Sequenzen führen können. Daher bieten Methoden zur gRNA-Bibliotheken-Generierung Optimierungspotenzial. Da die Reproduzierbarkeit der Screen-Ergebnisse durch die sogenannte Screening Coverage sichergestellt werden muss, erfordert eine Erhöhung der
Bibliotheks-Diversität gleichzeitig auch eine Vergrößerung des Versuchsmaßstabs und ist mit umfangreichem Zellkultur-Arbeitsaufwand verbunden. Die Screening Coverage gibt die
durchschnittliche Abundanz der einzelnen gRNA-Sequenzen in der Zellpopulation während des Screens an. Aktuelle Richtlinien empfehlen eine Screening Coverage, die zwischen dem 200- bis 1000-fachen Wert der Bibliotheks-Diversität liegt, allerdings fehlen bisher genaue Angaben die auf die verwendete gRNA Bibliothek abgestimmt sind. Deshalb stellt die benötigte Screening Coverage bisher einen limitierenden Faktor dar, der die Anzahl der möglichen Ziel-Gene-Kombinationen in einem Screen beschränkt.
In der vorliegenden Arbeit stellen wir eine neue Methode zur Generierung von multiplex gRNA Bibliotheken mit hohen Diversitäten vor. Die Methode, genannt 3Cs (covalently-closed circular-synthesized) Multiplexing, umgeht iterative, gepoolte Klonierugsschritte mit Restriktionsenzymen und PCR-Amplifikation von gRNA-kodierenden Oligonucleotiden. Wir
zeigen, dass 3Cs Multiplexing auf robuste Weise zur Herstellung von gleichmäßig verteilten multiplex gRNA Bibliotheken verwendet werden kann. Der Verteilungs-Skew, auch Skew-Ratio oder Bibliotheksbreite genannt, ist ein Maß zur Ermittlung der Gleichverteilung der gRNA-Sequenzen in der Bibliothek. Wir zeigen, dass 3Cs multiplex Bibliotheken typischerweise einen Verteilungs-Skew von 2.5 aufweisen, was unter den üblichen Werten von Einzel-gRNA Bibliotheken liegt.
Wir nahmen an, dass die gRNA-Bibliotheksverteilung die Robustheit von gepoolten CRISPR Screens beeinflussen könne und deshalb bei der Auswahl einer geeigneten Screening
Coverage berücksichtigt werden müsse. Um den Einfluss der gRNA-Bibliotheksverteilung auf die Screen-Qualität in Abhängigkeit von der verwendeten Screening Coverage zu untersuchen, generierten wir zwei künstlich fehlverteilte multiplex gRNA-Bibliotheken. Diese wurden, zusätzlich zu einer nahezu gleichverteilten multiplex gRNA-Bibliothek, jeweils mit einer 20- und 200-fachen Screening Coverage in einem kombinatorischen Proliferationsscreen angewandt.
Dadurch konnten wir die gRNA-Bibliotheksverteilung als den bestimmenden Parameter für die benötigte Screening Coverage identifizieren. Zusätzlich konnten wir zeigen, dass 3Cs multiplex gRNA-Bibliotheken auf Grund ihrer gleichmäßigen Verteilung mit minimierter Screening Coverage eingesetzt werden können, was zu einer 10-fachen Reduktion des assoziierten Arbeitsaufwands führt. Während bisherige Richtlinien für gepoolte CRISPR Screens die initiale
gRNA-Bibliotheksverteilung nicht berücksichtigen, empfehlen wir die Screening Coverage an dieser auszurichten.
Autophagie ist ein streng regulierter zellulärer Prozess, der den Lysosomen Abbau von intrazellulärem Material steuert und im Zusammenhang mit zahlreichen menschlichen Erkrankungen steht. Da Autophagie in eine Vielzahl von Signalwegen integriert ist, bietet es außerdem therapeutische Ansatzpunkte zur Behandlung von Krankheiten. Die Identifizierung von synergistischen Funktionen zwischen Autophagie-Genen könnte unser Verständnis über die molekularen Mechanismen, die der Regulation der Autophagie zu Grunde liegen, erweitern und dadurch neuartige Behandlungen ermöglichen.
Um genetische Interaktionen von Autophagie-Genen zu untersuchen haben wir eine 3Cs multiplex gRNA Bibliothek generiert, die auf menschliche Autophagie-Genkombinationen
abzielt. In dieser Arbeit demonstrieren wir die Funktionalität der 3Cs Autophagie multiplex gRNA Bibliothek unter Anwendung minimierter Screening Coverage in zwei verschiedenen Screen-Ausführungen: In einem Proliferationsscreen konnten wir Geninteraktionen
identifizieren, deren Verlust zu einer gesteigerten oder verringerten Zellproliferation führt. Unter diesen resultierte der Knockout von WDR45B-PIK3R4 zur stärksten Suppression der Proliferation, während die Depletion von ATG7-KEAP1 zu extrem verstärkter Proliferation beitrug. Unter Einsatz eines Autophagie-Reporters konnten wir in einem Autophagie Screen genetische Interaktionen aufdecken, die essentiell für Autophagie sind, darunter die
Interaktionen zwischen ATG2A-ATG2B , GABARAPL2-WIPI2 und ULK4-SQSTM1.
Wir glauben, dass 3Cs Multiplexing in Zukunft breite Anwendung in verschiedenen biologisch relevanten Feldern finden kann und die Entschlüsselung von kontext-abhängigen genetischen Interaktionen voranbringen und so das Verständnis für die Entstehung von komplexen pathologischen Phänotypen erweitern wird.
The complex and adaptive nature of malignant neoplasm constitute a major challenge for the development of effective anti-oncogenic therapies. Emerging evidence has uncovered the pivotal functions exerted by the small leucine-rich proteoglycans, decorin and biglycan, in affecting tumor growth and progression. In their soluble forms, decorin and biglycan act as powerful signaling molecules. By receptor-mediated signal transduction, both proteoglycans modulate key processes vital for tumor initiation and progression, such as autophagy, inflammation, cell-cycle, apoptosis, and angiogenesis. Despite of their structural homology, these two proteoglycans interact with distinct cell surface receptors and thus modulate distinct signaling pathways that ultimately affect cancer development. In this review, we summarize growing evidence for the complex roles of decorin and biglycan signaling in tumor biology and address potential novel therapeutic implications.
Combinatorial CRISPR-Cas screens have advanced the mapping of genetic interactions, but their experimental scale limits the number of targetable gene combinations. Here, we describe 3Cs multiplexing, a rapid and scalable method to generate highly diverse and uniformly distributed combinatorial CRISPR libraries. We demonstrate that the library distribution skew is the critical determinant of its required screening coverage. By circumventing iterative cloning of PCR-amplified oligonucleotides, 3Cs multiplexing facilitates the generation of combinatorial CRISPR libraries with low distribution skews. We show that combinatorial 3Cs libraries can be screened with minimal coverages, reducing associated efforts and costs at least 10-fold. We apply a 3Cs multiplexing library targeting 12,736 autophagy gene combinations with 247,032 paired gRNAs in viability and reporter-based enrichment screens. In the viability screen, we identify, among others, the synthetic lethal WDR45B-PIK3R4 and the proliferation-enhancing ATG7-KEAP1 genetic interactions. In the reporter-based screen, we identify over 1,570 essential genetic interactions for autophagy flux, including interactions among paralogous genes, namely ATG2A-ATG2B, GABARAP-MAP1LC3B and GABARAP-GABARAPL2. However, we only observe few genetic interactions within paralogous gene families of more than two members, indicating functional compensation between them. This work establishes 3Cs multiplexing as a platform for genetic interaction screens at scale.
Functional genomics studies in model organisms and human cell lines provided important insights into gene functions and their context-dependent role in genetic circuits. However, our functional understanding of many of these genes and how they combinatorically regulate key biological processes, remains limited. To enable the SpCas9-dependent mapping of gene-gene interactions in human cells, we established 3Cs multiplexing for the generation of combinatorial gRNA libraries in a distribution-unbiased manner and demonstrate its robust performance. The optimal number for combinatorial hit calling was 16 gRNA pairs and the skew of a library’s distribution was identified as a critical parameter dictating experimental scale and data quality. Our approach enabled us to investigate 247,032 gRNA-pairs targeting 12,736 gene-interactions in human autophagy. We identified novel genes essential for autophagy and provide experimental evidence that gene-associated categories of phenotypic strengths exist in autophagy. Furthermore, circuits of autophagy gene interactions reveal redundant nodes driven by paralog genes. Our combinatorial 3Cs approach is broadly suitable to investigate unexpected gene-interaction phenotypes in unperturbed and diseased cell contexts.