Refine
Document Type
- Article (2)
- Doctoral Thesis (1)
Language
- English (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Keywords
- Membrane biophysics (1)
- Membrane proteins (1)
As a centerpiece of antigen processing, the ATP-binding cassette transporter associated with antigen processing (TAP) became a main target for viral immune evasion. The herpesviral ICP47 inhibits TAP function, thereby suppressing an adaptive immune response. Here, we report on a thermostable ICP47-TAP complex, generated by fusion of different ICP47 fragments. These fusion complexes allowed us to determine the direction and positioning in the central cavity of TAP. ICP47-TAP fusion complexes are arrested in a stable conformation, as demonstrated by MHC I surface expression, melting temperature, and the mutual exclusion of herpesviral TAP inhibitors. We unveiled a conserved region next to the active domain of ICP47 as essential for the complete stabilization of the TAP complex. Binding of the active domain of ICP47 arrests TAP in an open inward facing conformation rendering the complex inaccessible for other viral factors. Based on our findings, we propose a dual interaction mechanism for ICP47. A per se destabilizing active domain inhibits the function of TAP, whereas a conserved C-terminal region additionally stabilizes the transporter. These new insights into the ICP47 inhibition mechanism can be applied for future structural analyses of the TAP complex.
The immune system makes use of major histocompatibility complex class I (MHC I) molecules to present peptides to other immune cells, which can evoke an immune response. Within this process of antigen presentation, the MHC I peptide loading complex, consisting of a transporter associated with antigen processing TAP, MHC I, and chaperones, is key to the initiation of immune response by shuttling peptides from the cytosol into the ER lumen. However, it is still enigmatic how the flux of antigens is precisely coordinated in time and space, limiting our understanding of antigen presentation pathways. Here, we report on the development of a synthetic viral TAP inhibitor that can be cleaved by light. This photo-conditional inhibitor shows temporal blockade of TAP-mediated antigen translocation, which is unleashed upon illumination. The recovery of TAP activity was monitored at single-cell resolution both in human immune cell lines and primary cells. The development of a photo-conditional TAP inhibitor thus expands the repertoire of chemical intervention tools for immunological processes.
As central component of the peptide loading complex, the ABC transporter TAP is a key player in the adaptive immune response. By recognizing and translocating antigenic peptides derived from proteasomal degradation into the ER lumen it connects the processing of harmful intruders and the marking of an infected cell for elimination. This work focused mainly on the interaction between TAP and one of its viral inhibitors. Of the five known TAP inhibitors, ICP47 is the only one that is not anchored in the ER membrane and has a nonomolar affinity to TAP. These properties and its specific architecture make it an interesting protein engineering tool that can be used in a variety of ways to generate functionally arrested TAP complexes. Different lengths of ICP47 were chosen to map the optimal distance between the binding pocket and the N-terminal elbow helix of either TAP1 or TAP2. I demonstrated that the interaction of fused ICP47 with coreTAP inhibits antigen presentation via MHC I. Interestingly, the loss of MHC I surface expression only depended on the presence of the active domain and not on the length of the fused ICP47 fragments. Summarizing it can be said that TAP complexes containing an intact active domain of ICP47 successfully suppressed MHC I surface expression. Considering the MHC I surface expression in the use of free ICP47 fragments it was revealed that the active domain may not be sufficient. All free constructs, except the one that contains exclusively the active domain (1-35), were able to fully arrest peptide translocation, while the fragment 1-35 partially restored MHC I surface expression. This was the first evidence suggesting that more residues might be present in the ICP47 sequence that contribute to the interaction with TAP.
Further characterization of the ICP47-coreTAP fusion complexes comprised the determination of their thermostability and melting temperatures. The ICP47-coreTAP fusion complexes revealed a preferred orientation for ICP47. The ICP47(1-65) fragment led to a stable complex only if fused to TAP2, highlighting an interesting asymmetry at the TAP1/TAP2 interface, which suggests a shorter distance of the C-terminus of the stabilizing region to the elbow helix of TAP2 than of TAP1. The shorter fragments 1-35 and 1-50, and the ICP47 linker fragments, which inhibited, but did not trigger any thermostabilizing effects on TAP, revealed a second hint for the presence of other residues important for the ICP47/TAP interaction. To define the thermostability in more detail, the melting temperature of complexes with fused or freely bound ICP47 fragments was determined. Short fused fragments of ICP47 (residues 1-35 or 1-50) did not fully stabilize the TAP complex. Only ICP47 fragments longer than residues 1-50 raised the melting temperature to the full extent and led to a completely stabilized complex, suggesting that the critical melting temperature, which determines whether a complex is fully stabilized or not, is about 44-45°C. By comparing different ICP47 proteins from the herpesviral clade, I further noticed that the 21 residues following the active domain are highly conserved. The residues in this region were exchanged by glycines and alanines to study their impact on the thermostabilization of TAP. I demonstrated that several charged residues, an alanine rich, and a proline rich sequence were mainly responsible for the preservation of high melting temperatures. In summary, these findings reveal a dual inhibition mechanism of ICP47. While the active domain of ICP47 is wedged at the TAP1/2 interface and arrests the complex in an open-inward facing conformation, the highly conserved C-terminal region stabilizes the ICP47/TAP interaction and generates a thermostabilized TAP complex.
The second part of this thesis deals with two alternative expression and stabilization strategies for coreTAP, designed to provide a 1:1 ratio of TAP subunits during protein biosynthesis. Different glycine-serine (GS) linkers and a self cleaving 2A site were im- plemented into the TAP sequence and used for comparison with the classical coreTAP. Despite their functionality in antigen translocation, the utilization of GS linkers proved to be unsuitable due to low expression and scarce purification efficiency caused by the unfeasible orthogonal purification. In contrast, the use of a 2A site allowed orthogonal His10- and SBP-tag purification and yielded comparable amounts to the classical coreTAP. However, the ICP47/coreTAP interaction appeared to be hampered by the modified N-terminus of ICP47, due to the cleavage process.
The third and last part of this work deals with the Thermus thermophilus ABC trans- porter TmrAB, which was identified to be part of the same ABC subfamily as TAP. The structure of TmrAB is similar to that of coreTAP and includes a TMD and an NBD for each subunit. In comparison to TAP, TmrAB has a broader substrate range, but it can transport peptides, which are also transported by TAP. Since the natural substrate, and thus the actual function, of TmrAB has not yet been identified, it is counted among the multidrug resistance ABC transporters, from where it also takes its name. In this work, the question was investigated whether TmrAB can be utilized as a TAP substitute. To compare the function of TmrAB and TAP in a natural cell environment, the N-terminal domains of the TAP subunits called TMD0s were fused to the TmrAB subunits and subsequently expressed as different combinations. I found that especially the hybrid complexes containing a TMD0 of TAP2 were functional in terms of MHC I surface expression. Furthermore, TmrAB with TMD0 co-localized prevalently with the ER marker PDI while complexes without TMD0 did not co-localize. Interestingly, the analysis of the interaction with components of the PLC revealed that interaction with tapasin could only occur when a TMD0 was present. In turn, calreticulin, MHC I, and ERp57 were bound, regardless of the presence of a TMD0. It is remarkable that a bacterial protein, sharing only 27-30% sequence identity with human TAP is able to take over a key function of our adaptive immune system. Yet, TmrAB originates from a hyperthermophilic bacterium and may have assembly and folding difficulties that the human cell seeks to overcome by recruiting chaperones like calreticulin and ERp57. Although further experiments will be necessary to analyze the interaction of TmrAB with the PLC components in more detail, TmrAB appears to be homologous to coreTAP, not only in terms of sequence and structure, but also in terms of function.