Refine
Document Type
- Article (3)
- Doctoral Thesis (1)
Has Fulltext
- yes (4)
Is part of the Bibliography
- no (4)
Keywords
- Podospora anserina (2)
- mitophagy (2)
- ADCD (1)
- F1Fo-ATP-synthase (1)
- aging (1)
- general autophagy (1)
- isorhamnetin (1)
- lifespan (1)
- mPTP (1)
- methyltransferase (1)
Institute
Quercetin is a flavonoid that is ubiquitously found in vegetables and fruits. Like other flavonoids, it is active in balancing cellular reactive oxygen species (ROS) levels and has a cyto-protective function. Previously, a link between ROS balancing, aging, and the activity of O-methyltransferases was reported in different organisms including the aging model Podospora anserina. Here we describe a role of the S-adenosylmethionine-dependent O-methyltransferase PaMTH1 in quercetin-induced lifespan extension. We found that effects of quercetin treatment depend on the methylation state of the flavonoid. Specifically, we observed that quercetin treatment increases the lifespan of the wild type but not of the PaMth1 deletion mutant. The lifespan increasing effect is not associated with effects of quercetin on mitochondrial respiration or ROS levels but linked to the induction of the PaMth1 gene. Overall, our data demonstrate a novel role of O-methyltransferase in quercetin-induced longevity and identify the underlying pathway as part of a network of longevity assurance pathways with the perspective to intervene into mechanisms of biological aging.
Mitochondrial F1Fo-ATP-synthase dimers play a critical role in shaping and maintenance of mitochondrial ultrastructure. Previous studies have revealed that ablation of the F1Fo-ATP-synthase assembly factor PaATPE of the ascomycete Podospora anserina strongly affects cristae formation, increases hydrogen peroxide levels, impairs mitochondrial function and leads to premature cell death. In the present study, we investigated the underlying mechanistic basis. Compared to the wild type, we observed a slight increase in non-selective and a pronounced increase in mitophagy, the selective vacuolar degradation of mitochondria. This effect depends on the availability of functional cyclophilin D (PaCYPD), the regulator of the mitochondrial permeability transition pore (mPTP). Simultaneous deletion of PaAtpe and PaAtg1, encoding a key component of the autophagy machinery or of PaCypD, led to a reduction of mitophagy and a partial restoration of the wild-type specific lifespan. The same effect was observed in the PaAtpe deletion strain after inhibition of PaCYPD by its specific inhibitor, cyclosporin A. Overall, our data identify autophagy-dependent cell death (ADCD) as part of the cellular response to impaired F1Fo-ATP-synthase dimerization, and emphasize the crucial role of functional mitochondria in aging.
In den letzten Jahren findet die Wirkung von Polyphenolen auf den Alterungsprozess oder zur Behandlung von Krankheiten immer mehr Beachtung. Das Ziel dieser Arbeit war die Aufklärung der Wirkmechanismen der Polyphenole Gossypol, Curcumin und Quercetin, um Hinweise für neue oder verbesserte Therapieansätze zu erhalten. Die dazu durchgeführten Untersuchungen lieferten folgende Ergebnisse:
1. Der Ascomycet "P. anserina" eignet sich als Modellorganismus zur Untersuchung der Wirkmechanismen verschiedener Polyphenole, da die bereits aus der Literatur bekannten Effekte auf das Überleben höherer Organismen auch in "P. anserina" beobachtet wurden.
2. Die Mitochondrienfunktion spielt auf unterschiedliche Art eine Rolle in der Kompensation von Dysfunktionen oder Stressbedingungen in der Zelle und wirkt somit positiv auf die Regulation der Lebensspanne von "P. anserina". In der "PaSod3"-Deletionsmutante wurde eine Verschiebung der mitochondrialen Atmung von einer Komplex I-abhängigen hin zu einer vermehrt Komplex II-abhängigen Atmung festgestellt. Die damit verbundene Abnahme des mitochondrialen Membranpotentials dient neben der bereits bekannten hohen Superoxid-Menge als Signal zur Mitophagie-Induktion. Auch die Anpassung der Mitochondrienfunktion durch die erhöhte Bildung von mtRSCs, wie im Falle von Gossypol oder Quercetin, kann zur Kompensation von Dysfunktionen beitragen bzw. sie abschwächen.
3. Es gibt keinen grundlegenden gemeinsamen Wirkmechanimus der drei untersuchten Polyphenole. Zwar spielt Wasserstoffperoxid bei verschiedenen Stoffen eine Rolle, aber nicht bei allen. Zusätzlich wurde gezeigt, dass Wasserstoffperoxid abhängig von der vorherrschenden Konzentration wirkt und daher auch keine Allgemeingültigkeit des Effektes vorherzusagen ist. In niedrigen Konzentrationen sorgt Wasserstoffperoxid z. B. für eine Induktion der Autophagie und damit einhergehende eine Lebensverlängerung. Im Gegensatz dazu wirken hohe Wasserstoffperoxid-Konzentrationen lebensverkürzend und lösen verschiedene Formen von Zelltod aus.
4. Die Curcumin-vermittelte Langlebigkeit wurde das erste Mal in Verbindung mit einer funktionellen Autophagie gebracht. Im Detail führt die Behandlung mit Curcumin durch eine PaSOD1-abhängige leichte Erhöhung der Wasserstoffperoxid-Menge zu einer Induktion von nicht-selektiver Autophagie. Die induzierte Autophagie ist Ursache der Lebensverlängerung durch Curcumin.
5. Gossypol wirkt in Abhängigkeit der mitochondrialen Permeabilitäts-Transitionspore bzw. von ihrem Regulator Cyclophilin D. Hierbei verstärkt die deutlich erhöhte Wasserstoffperoxid-Menge wahrscheinlich die Induktion von programmiertem Zelltod. Gleichzeitig wird eine cytoprotektive Form von Autophagie und ein scheinbar ATG-unabhängiger Abbau von Mitochondrien induziert.
6. Quercetin wirkt in "P. anserina" abhängig vom Methylierungs-Status. Untersuchungen mit Mutanten der "O"-Methyltransferase PaMTH1 ergaben die Notwendigkeit der Anwesenheit von PaMTH1 für den lebensverlängernden Effekt von Quercetin. Analysen mit dem methylierten Derivat Isorhamnetin verdeutlichten diese Abhängigkeit und zeigten zudem, dass Quercetin sowohl in der methylierten als auch unmethylierten Form Effekte hervorruft. Jedoch sind nur die Effekte des unmethylierten Quercetin unabhängig von der Lebensverlängerung und eher schädlich für die Zelle.
Mitochondria are the "power plants" of eukaryotic cells involved cellular energy metabolism and lead the generation of most of the cellular "energy currency" adenosine triphosphate (ATP). In addition, they have other crucial functions including the control of programmed cell death, iron/sulfur cluster biogenesis and copper and calcium homeostasis. Mitochondrial dysfunction is deleterious and leads to degeneration, disease and aging. A number of individual pathways are active in keeping mitochondria functional over longer periods of time and thereby have a strong impact on lifespan. These mitochondrial quality control (mtQC) pathways occur at different molecular and cellular levels and are all limited in their capacity. They do not all work at the same time. Some of them are induced when others fail. Currently, the underlying molecular interaction of pathways and their regulation is only initially elucidated. ...