Refine
Document Type
- Article (13)
Language
- English (13)
Has Fulltext
- yes (13)
Is part of the Bibliography
- no (13)
Keywords
- Doppler radar (2)
- circuit analysis (2)
- nonlinear dynamical systems (2)
- oscillators (2)
- phase noise (2)
- system analysis and design (2)
- AM-PM noise conversion (1)
- Atmosphere (1)
- Biomedical engineering (1)
- Biophysics (1)
This work presents, to our knowledge, the first completely passive imaging with human-body-emitted radiation in the lower THz frequency range using a broadband uncooled detector. The sensor consists of a Si CMOS field-effect transistor with an integrated log-spiral THz antenna. This THz sensor was measured to exhibit a rather flat responsivity over the 0.1–1.5-THz frequency range, with values of the optical responsivity and noise-equivalent power of around 40 mA/W and 42 pW/√Hz, respectively. These values are in good agreement with simulations which suggest an even broader flat responsivity range exceeding 2.0 THz. The successful imaging demonstratestheimpressivethermalsensitivitywhichcanbeachievedwithsuchasensor. Recording of a 2.3×7.5-cm2-sized image of the fingers of a hand with a pixel size of 1 mm2 at a scanning speed of 1 mm/s leads to a signal-to-noise ratio of 2 and a noise-equivalent temperature difference of 4.4 K. This approach shows a new sensing approach with field-effect transistors as THz detectors which are usually used for active THz detection.
This paper explores the many interesting implications for oscillator design, with optimized phase-noise performance, deriving from a newly proposed model based on the concept of oscillator conjugacy. For the case of 2-D (planar) oscillators, the model prominently predicts that only circuits producing a perfectly symmetric steady-state can have zero amplitude-to-phase (AM-PM) noise conversion, a so-called zero-state. Simulations on standard industry oscillator circuits verify all model predictions and, however, also show that these circuit classes cannot attain zero-states except in special limit-cases which are not practically relevant. Guided by the newly acquired design rules, we describe the synthesis of a novel 2-D reduced-order LC oscillator circuit which achieves several zero-states while operating at realistic output power levels. The potential future application of this developed theoretical framework for implementation of numerical algorithms aimed at optimizing oscillator phase-noise performance is briefly discussed.
HbA1c is the gold standard test for monitoring medium/long term glycemia conditions in diabetes care, which is a critical factor in reducing the risk of chronic diabetes complications. Current technologies for measuring HbA1c concentration are invasive and adequate assays are still limited to laboratory-based methods that are not widely available worldwide. The development of a non-invasive diagnostic tool for HbA1c concentration can lead to the decrease of the rate of undiagnosed cases and facilitate early detection in diabetes care. We present a preliminary validation diagnostic study of W-band spectroscopy for detection and monitoring of sustained hyperglycemia, using the HbA1c concentration as reference. A group of 20 patients with type 1 diabetes mellitus and 10 healthy subjects were non-invasively assessed at three different visits over a period of 7 months by a millimeter-wave spectrometer (transmission mode) operating across the full W-band. The relationship between the W-band spectral profile and the HbA1c concentration is studied using longitudinal and non-longitudinal functional data analysis methods. A potential blind discrimination between patients with or without diabetes is obtained, and more importantly, an excellent relation (R-squared = 0.97) between the non-invasive assessment and the HbA1c measure is achieved. Such results support that W-band spectroscopy has great potential for developing a non-invasive diagnostic tool for in-vivo HbA1c concentration monitoring in humans.
The pathological skin phenotype caused by hyperglycemia is an important indicator for the progress of diabetes mellitus. An early detection of diabetes assures an early intervention to regulate the carbohydrate metabolism. In this publication a non-invasive detection principle based on the measurement of complex scattering parameters in the millimeter-wave frequency range is presented. The measurement principle provides evidence of the applicability for the identification of different glycemic states in animal models. The method proposed here can be used to predict diabetes status in animal models and is interesting for application on humans in view of safeness of millimeter-wave radiation. Furthermore the complex scattering parameters give important information about the anatomic varieties between the analyzed skin samples of the different mice strains. In contrast to other methods, our approach is less sensitive to skin variations between animals.
Model frameworks, based on Floquet theory, have been shown to produce effective tools for accurately predicting phase-noise response of single (free-running) oscillator systems. This method of approach, referred to herein as macro-modeling, has been discussed in several highly influential papers and now constitutes an established branch of modern circuit theory. The increased application of, for example, injection-locked oscillators and oscillator arrays in modern communication systems has subsequently exposed the demand for similar rigorous analysis tools aimed at coupled oscillating systems. This paper presents a novel solution in terms of a macro-model characterizing the phase-response of synchronized coupled oscillator circuits and systems perturbed by weak noise sources. The framework is generalized and hence applicable to all circuit configurations and coupling topologies generating a synchronized steady-state. It advances and replaces the phenomenological descriptions currently found in the published literature pertaining to this topic and, as such, represents a significant breakthrough w.r.t. coupled oscillator noise modeling. The proposed model is readily implemented numerically using standard routines.
This paper presents an imaging radar system for structural health monitoring (SHM) of wind turbine blades. The imaging radar system developed here is based on two frequency modulated continuous wave (FMCW) radar sensors with a high output power of 30 dBm. They have been developed for the frequency bands of 24,05 GHz-24,25 GHz and 33.4 GHz-36.0 GHz, respectively. Following the successful proof of damage detection and localization in laboratory conditions, we present here the installation of the sensor system at the tower of a 2 MW wind energy plant at 95 m above ground. The realization of the SHM-system will be introduced including the sensor system, the data acquisition framework and the signal processing procedures. We have achieved an imaging of the rotor blades using inverse synthetic aperture radar techniques under changing environmental and operational condition. On top of that, it was demonstrated that the front wall and back wall radar echo can be extracted from the measured signals demonstrating the full penetration of wind turbine blades during operation.
Conventional radar-based image reconstruction techniques fail when they are applied to heterogeneous breast tissue, since the underlying in-breast relative permittivity is unknown or assumed to be constant. This results in a systematic error during the process of image formation. A recent trend in microwave biomedical imaging is to extract the relative permittivity from the object under test to improve the image reconstruction quality and thereby to enhance the diagnostic assessment. In this paper, we present a novel radar-based methodology for microwave breast cancer detection in heterogeneous breast tissue integrating a 3D map of relative permittivity as a priori information. This leads to a novel image reconstruction formulation where the delay-and-sum focusing takes place in time rather than range domain. Results are shown for a heterogeneous dense (class-4) and a scattered fibroglandular (class-2) numerical breast phantom using Bristol's 31-element array configuration.
This work aims at radar sensors in the frequency band from 57 to 64 GHz that can be embedded in wind turbine blades during manufacturing, enabling non-destructive quality inspection directly after production and structural health monitoring (SHM) during the complete service life of the blade. In this paper, we show the fundamental damage detection capability of this sensor technology during fatigue testing of typical rotor blade materials. Therefore, a frequency modulated continuous wave (FMCW) radar sensor is used for damage diagnostics, and the results are validated by simultaneous camera recordings. Here, we focus on the failure modes delamination, fiber waviness (ondulation), and inter-fiber failure. For each failure mode, three samples have been designed and experimentally investigated during fatigue testing. A damage index has been proposed based on residual, that is, differential, signals exploiting measurements from pristine structural conditions. This study shows that the proposed innovative radar approach is able to detect continuous structural degradation for all failure modes by means of gradual signal changes.
This study presents an ultra-wideband, elliptical slot, planar monopole antenna for early breast cancer microwave imaging. The on-body antenna's operation is optimised by direct contact with the patient's skin. With a compact size of 9 × 7 mm, the antenna covers a wide bandwidth from 16 to 24 GHz for reflection coefficients lower than –10 dB. Besides, it also features an electrode for electrical impedance tomography applications. Verification on a volunteer's breast gives an excellent agreement with the simulation for the defined bandwidth. Furthermore, as the first stage of the system's characterisation, pork fat is also used to demonstrate the possibility to enhance the transmission between the antennas within the high loss environment. Those results propose the feasibility of implementing a high-frequency radar system for breast cancer detection.
Radar technology in the millimeter-wave frequency band offers many interesting features for wind park surveillance, such as structural monitoring of rotor blades or the detection of bats and birds in the vicinity of wind turbines (WTs). Currently, the majority of WTs are affected by shutdown algorithms to minimize animal fatalities via direct collision with the rotor blades or barotrauma effects. The presence of rain is an important parameter in the definition of those algorithms together with wind speed, temperature, time of the day, and season of the year. A Ka-band frequency-modulated continuous-wave radar (33.4-36.0 GHz) installed at the tower of a 2-MW WT was used during a field study. We have observed characteristic rain-induced patterns, based on the range-Doppler algorithm. To better understand those signatures, we have developed a laboratory experiment and implemented a numerical modeling framework. Experimental and numerical results for rain detection and classification are presented and discussed here. Based on this article, a bat- and bird-friendly adaptive WT control can be developed for improved WT efficiency in periods of rain and, at the same time, reduced animal mortality.