Refine
Document Type
- Article (4)
- Doctoral Thesis (1)
Language
- English (5)
Has Fulltext
- yes (5)
Is part of the Bibliography
- no (5)
Keywords
- Apoptosis (2)
- BET proteins (1)
- BH3 mimetics (1)
- CAR-NK cell (1)
- CAR-T cell (1)
- CIK cell (1)
- Cancer (1)
- Immunotherapy (1)
- NK cell (1)
- NK-92 (1)
Institute
The promising development of adoptive immunotherapy over the last four decades has revealed numerous therapeutic approaches in which dedicated immune cells are modified and administered to eliminate malignant cells. Starting in the early 1980s, lymphokine activated killer (LAK) cells were the first ex vivo generated NK cell-enriched products utilized for adoptive immunotherapy. Over the past decades, various immunotherapies have been developed, including cytokine-induced killer (CIK) cells, as a peripheral blood mononuclear cells (PBMCs)-based therapeutic product, the adoptive transfer of specific T and NK cell products, and the NK cell line NK-92. In addition to allogeneic NK cells, NK-92 cell products represent a possible “off-the-shelf” therapeutic concept. Recent approaches have successfully enhanced the specificity and cytotoxicity of T, NK, CIK or NK-92 cells towards tumor-specific or associated target antigens generated by genetic engineering of the immune cells, e.g., to express a chimeric antigen receptor (CAR). Here, we will look into the history and recent developments of T and NK cell-based immunotherapy.
Due to their physiological role in removing damaged cells, natural killer (NK) cells represent ideal candidates for cellular immunotherapy in the treatment of cancer. Thereby, the cytotoxicity of NK cells is regulated by signals on both, the NK cells as well as the targeted tumor cells, and the interplay and balance of these signals determine the killing capacity of NK cells. One promising avenue in cancer treatment is therefore the combination of NK cell therapy with agents that either help to increase the killing capacity of NK cells or sensitize tumor cells to an NK cell-mediated attack. In this mini-review, we present different strategies that can be explored to unleash the potential of NK cell immunotherapy. In particular, we summarize how modulation of apoptosis signaling within tumor cells can be exploited to sensitize tumor cells to NK cell-mediated cytotoxicity.
The induction of apoptosis is a direct way to eliminate tumor cells and improve cancer therapy. Apoptosis is tightly controlled by the balance of pro- and antiapoptotic Bcl-2 proteins. BH3 mimetics neutralize the antiapoptotic function of Bcl-2 proteins and are highly promising compounds inducing apoptosis in several cancer entities including pediatric malignancies. However, the clinical application of BH3 mimetics in solid tumors is impeded by the frequent resistance to single BH3 mimetics and the anticipated toxicity of high concentrations or combination treatments. One potential avenue to increase the potency of BH3 mimetics is the development of immune cell-based therapies to counteract the intrinsic apoptosis resistance of tumor cells and sensitize them to immune attack. Here, we describe spheroid cultures of pediatric cancer cells that can serve as models for drug testing. In these 3D models, we were able to demonstrate that activated allogeneic Natural Killer (NK) cells migrated into tumor spheroids and displayed cytotoxicity against a wide range of pediatric cancer spheroids, highlighting their potential as anti-tumor effector cells. Next, we investigated whether treatment of tumor spheroids with subtoxic concentrations of BH3 mimetics can increase the cytotoxicity of NK cells. Notably, the cytotoxic effects of NK cells were enhanced by the addition of BH3 mimetics. Treatment with either the Bcl-XL inhibitor A1331852 or the Mcl-1 inhibitor S63845 increased the cytotoxicity of NK cells and reduced spheroid size, while the Bcl-2 inhibitor ABT-199 had no effect on NK cell-mediated killing. Taken together, this is the first study to describe the combination of BH3 mimetics targeting Bcl-XL or Mcl-1 with NK cell-based immunotherapy, highlighting the potential of BH3 mimetics in immunotherapy.
Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in early childhood. Despite recent advances in the treatment regimes of rhabdomyosarcoma, the 5-year survival is still alarmingly low for the more aggressive metastasizing alveolar rhabdomyosarcoma subtype. Novel treatment strategies are needed in order to increase the overall survival rate. Hallmarks of cancer include evade cell death induction and evade immune system surveillance. This is mediated in part by up-regulation of inhibitor of apoptosis (IAP) proteins. With the development of Smac mimetic compounds mimicking the endogenous IAP antagonist Smac, this tumor evasion mechanism became exploitable.
In this PhD thesis, a combinatory approach for a putative treatment option of RMS will be presented. Here, the Smac mimetic compound BV6 will be used as a pre-treatment of RMS cells. This leads to a sensitizing effect within the tumor cells, increasing the killing efficacy of natural killer (NK) cells.
Subtoxic concentrations of BV6 were chosen to sensitize RMS cells. To remodel the solid tumor characteristics of RMS, a multicellular RMS tumor spheroid culture model was used.
In both tumor spheroids and conventional monolayer cell culture BV6 induced the degradation of IAP proteins (cIAP1, cIAP2, in spheroids XIAP). Further, BV6 led to the activation of both, the canonical and non-canonical NF-κB signaling pathways.
This was demonstrated by an increased IκBα and p65 phosphorylation, and nuclear translocation of p-p65, indicative for an active canonical NF-κB signaling. On the other side, cIAP degradation led to the stabilization and accumulation of NIK and downstream partial degradation of p100 to p52 and its nuclear translocation, indicating non-canonical NF-κB signaling pathway activity. A bulk RNA sequencing approach of BV6 treated RH30 cells validated the NF-κB signaling involvement and identified 182 differentially expressed genes. Among the interesting target genes are NFKBIA (IκBα),BIRC3 (cIAP2), NFKB2 (p100), CCL5 and SSTR2. SSTR2 was thoroughly validated as being up-regulated on a transcriptional and on protein level. Here, SSTR2A, one of the two alternative splicing variants, is up-regulated and opens a hypothetical targeted treatment strategy, as SSTR2 expression is not associated with RMS, but rather described with neuroendocrine tumor entities. In addition, CCL5 was thoroughly validated as a BV6 induced target. Again, the up-regulated mRNA transcription was validated by an increased translation and by increased secretion of CCL5. As CCL5 being associated as pro-migratory and activating of NK cells, CRISPR/Cas9 mediated CCL5 knock-out studies were performed to evaluate the influence of CCL5 within a BV6 pre-treatment and NK cell co-cultivation setting. It was shown that CCL5 knock-out does not rescue BV6 pre-treated RMS spheroids from NK cell attack and killing.
The previous mentioned transcriptional activity by BV6 stimulation was NIK mediated as knock-down of NIK reduced the mRNA transcription of several interesting genes.
However, NIK mediated down-stream signaling had no influence on the BV6 induced sensitizing effect towards NK cell mediated attack. A NIK knock-down had no rescue effect upon BV6 pre-treatment and NK cell co-treatment.
As cIAP proteins are present in receptor bound complexes, e.g. complex I at the TNF receptor 1 (TNFR1), a putative involvement of death receptors in general was evaluated.
Indeed, BV6 treatment of RMS cells could increase the surface presentation of DR5, a death receptor ligating TRAIL. Functionally, co-treatment of BV6 with TRAIL led to an additive cell death inducting effect. However, within the NK cell co-cultivation setting, addition of a neutralizing TRAIL anitbody could not rescue BV6 pre-treated RMS spheroids from NK cell killing. A similar effect was observed when neutralizing TNFα by adding Enbrel during the NK cell co-cultivation. BV6 sensitization of RMS spheroids seems to be independent of death receptors.
In addition to activating NF-κB, BV6 as a Smac mimetic is supposed to be able to release caspases bound by IAP proteins. Indeed, BV6 pre-treatment of RMS spheroids and co-cultivation with NK cells could cleave and thereby activate the executioner caspase-3. Further, treatment with a pan-caspase inhibitor, zVAD.fmk, could reduce the BV6 mediated sensitizing effect towards NK cell attack in RD spheroids.
Taken together, BV6 does induce a thoroughly validated NF-κB signaling pathway, leading to a NIK mediated transcriptional signature change. However, the NF-κB activation might not be responsible for the observed sensitization. Further, BV6 in combination with NK cells led to a seemingly death receptor independent, caspase dependent cell death induction of RMS spheroids. Although the mechanism remains partially con-cealed, a therapeutic benefit by combining a cell death sensitizing compound, i.e. BV6, with cytotoxic lymphocytes is evident.
BH3 mimetics are promising novel anticancer therapeutics. By selectively inhibiting BCL-2, BCL-xL, or MCL-1 (i.e. ABT-199, A-1331852, S63845) they shift the balance of pro- and anti-apoptotic proteins in favor of apoptosis. As Bromodomain and Extra Terminal (BET) protein inhibitors promote pro-apoptotic rebalancing, we evaluated the potential of the BET inhibitor JQ1 in combination with ABT-199, A-1331852 or S63845 in rhabdomyosarcoma (RMS) cells. The strongest synergistic interaction was identified for JQ1/A-1331852 and JQ1/S63845 co-treatment, which reduced cell viability and long-term clonogenic survival. Mechanistic studies revealed that JQ1 upregulated BIM and NOXA accompanied by downregulation of BCL-xL, promoting pro-apoptotic rebalancing of BCL-2 proteins. JQ1/A-1331852 and JQ1/S63845 co-treatment enhanced this pro-apoptotic rebalancing and triggered BAK- and BAX-dependent apoptosis since a) genetic silencing of BIM, BAK or BAX, b) inhibition of caspase activity with zVAD.fmk and c) overexpression of BCL-2 all rescued JQ1/A-1331852- and JQ1/S63845-induced cell death. Interestingly, NOXA played a different role in both treatments, as genetic silencing of NOXA significantly rescued from JQ1/A-1331852-mediated apoptosis but not from JQ1/S63845-mediated apoptosis. In summary, JQ1/A-1331852 and JQ1/S63845 co-treatment represent new promising therapeutic strategies to synergistically trigger mitochondrial apoptosis in RMS.