Refine
Document Type
- Article (5)
- Doctoral Thesis (1)
Has Fulltext
- yes (6)
Is part of the Bibliography
- no (6)
Keywords
- Baird's rule (2)
- excited state aromaticity (2)
- photochemistry (2)
- photolabile protecting groups (2)
- substituent effects (2)
- ATTO 390 (1)
- DNA (1)
- Photochemie (1)
- Photoschalter (1)
- TICT (1)
Institute
Photoactivatable compounds for example photoswitches or photolabile protecting groups (PPGs, photocages) for spatiotemporal light control, play a crucial role in different areas of research. For each application, parameters such as the absorption spectrum, solubility in the respective media and/or photochemical quantum yields for several competing processes need to be optimized. The design of new photochemical tools therefore remains an important task. In this study, we exploited the concept of excited-state-aromaticity, first described by N. Colin Baird in 1971, to investigate a new class of photocages, based on cyclic, ground-state-antiaromatic systems. Several thio- and nitrogen-functionalized compounds were synthesized, photochemically characterized and further optimized, supported by quantum chemical calculations. After choosing the optimal scaffold, which shows an excellent uncaging quantum yield of 28 %, we achieved a bathochromic shift of over 100 nm, resulting in a robust, well accessible, visible light absorbing, compact new photocage with a clean photoreaction and a high quantum product (ϵ⋅Φ) of 893 M−1 cm−1 at 405 nm.
Photoactivatable compounds for example photoswitches or photolabile protecting groups (PPGs, photocages) for spatiotemporal light control, play a crucial role in different areas of research. For each application, parameters such as the absorption spectrum, solubility in the respective media and/or photochemical quantum yields for several competing processes need to be optimized. The design of new photochemical tools therefore remains an important task. In this study, we exploited the concept of excited-state-aromaticity, first described by N. Colin Baird in 1971, to investigate a new class of photocages, based on cyclic, ground-state-antiaromatic systems. Several thio- and nitrogen-functionalized compounds were synthesized, photochemically characterized and further optimized, supported by quantum chemical calculations. After choosing the optimal scaffold, which shows an excellent uncaging quantum yield of 28 %, we achieved a bathochromic shift of over 100 nm, resulting in a robust, well accessible, visible light absorbing, compact new photocage with a clean photoreaction and a high quantum product (ϵ⋅Φ) of 893 M−1 cm−1 at 405 nm.
Recently, photochromic derivatives of nucleobases have drawn attention for regulating oligonucleotide hybridization with light for photopharmacological applications. The nucleobase moiety provides attractive interaction for hybridization, whereas the photochromic moiety can alter the interaction upon irradiation due to conformational changes. Herein we report the synthesis of 2‐phenyldiazenyl‐substituted 2’‐deoxyadenosine (dAAzo) and 2’‐deoxyguanosine (dGAzo) and investigate their influence in a DNA context by UV/Vis absorption, fluorescence and CD spectroscopies. For comparison, the literature‐known azobenzene C‐nucleoside DNAzo was used as a reference system. It could be shown that photochromic purines improve overall hybridization affinity compared to azobenzene C‐nucleosides. In particular, 2’‐deoxyadenosine analogue dAAzo increases melting temperatures by 7.5 °C in the favored trans state with 86 % of the switching efficiency of the reference system.
Molekulare Werkzeuge können in der Wissenschaft unter anderem dazu verwendet werden, biochemische Prozesse gezielt zu untersuchen, um sie somit besser zu verstehen. Dabei handelt es sich zum Beispiel, um kleine chemische Moleküle, die gezielt für ihr Anwendungsgebiet konzipiert worden sind. Mit Ihnen lassen sich z.B. Interaktionen zwischen (Makro-)Molekülen regulieren, chemische Gleichgewichte lokal verändern oder auch Botenstoffe zielgerichtet freisetzen. Die Effekte dieser temporären Einwirkung auf verschiedenste biologische Systeme können hilfreiche Erkenntnisse struktureller, funktioneller oder systematischer Art für die entsprechenden Forschungsgebiete liefern.
Um die interdisziplinären Problemstellungen zielgerichtet mit den entsprechend zugeschnittenen Werkzeugen zu adressieren, ist es dabei jedoch absolut notwendig, dass ein umfassendes und über die Grenzen der jeweiligen Fachgebiete hinaus gehendes Verständnis der jeweiligen Fragestellungen entwickelt wird.
Viele der bisher bekannten Werkzeuge benötigen für ihren Einsatz bis heute noch relativ harsche Reaktionsbedingungen, haben ein eingeschränktes Anwendungsfeld oder lassen sich nicht ausreichend Zeit- & Ortsaufgelöst „aktivieren“. Die Möglichkeit Licht als externes Trigger-Signal zu verwenden, um die entsprechenden molekularen Werkzeuge zu aktivieren (oder auch zu deaktivieren), überwindet genau diese Defizite und bringt neben der hohen zeitlichen und räumlichen Auflösung noch viele weitere Vorteile mit sich. Im Rahmen meiner Doktorarbeit ist es mir gelungen gemeinsam mit meinen Kooperationspartnern neue lichtaktivierbare molekulare Werkzeuge von Grund auf zu designen, zu synthetisieren, sie auf ihre photochemischen Eigenschaften zu untersuchen und sie anzuwenden. Durch die interdisziplinäre Zusammenarbeit mit Doktoranden aus der Organischen, Theoretischen und Physikalischen Chemie, konnte ein umfassendes Bild dieser neuen Substanzklassen aufgezeigt werden. Die verschiedenen Arten lichtaktivierbarer Werkzeuge sollen im Verlauf dieser Arbeit genauer herausgearbeitet werden. Generell kann man in drei grundlegenden Klassen von lichtaktivierbaren Werkzeugen unterscheiden: 1. irreversibel photolabile Schutzgruppen, 2. photoaktivierbare Label und 3. reversibel lichtschaltbare Photoschalter.
Auf dem Gebiet der photolabilen Schutzgruppen, auch photoaktivierbare Schutzgruppen oder Photocages genannt, ist es uns gelungen eine neue Spezies von Molekülen zu identifizieren, die dazu in der Lage sind, nach photochemischer Anregung eine spezifische Bindung innerhalb ihres molekularen Gerüsts zu spalten. Möglich gemacht wurde dies, indem wir den sog. „uncaging Prozess ganz neu gedacht“ haben und mit der Unterstützung von Theorie und Spektroskopie unsere Ergebnisse in einer Struktur-Aktivitäts-Beziehungs-Studie (SAR) festhalten konnten. Aus einer Substanzbibliothek von diversen theoretisch berechneten Kandidaten, wurden die vielversprechendsten Verbindungen anschließend synthetisiert und photochemisch charakterisiert. Nach initialen Untersuchungen und den daraus hervorgehenden Erkenntnissen, wurden weitere molekulare Struktur auf die Optimierungen der photochemischen Eigenschaften hin theoretisch berechnet und anschließend im Labor realisiert. Daraus resultierend entwickelten wir einen Photocage, der mit einer hohen Quantenausbeute mit Licht von über 450 nm photolysierbar ist und ebenfalls dazu in der Lage ist Neurotransmitter wie z.B. Glutamat zielgerichtet und lichtaktiviert freizusetzen. Eine weitere Struktur-Aktivitäts-Beziehungs-Studie wurde im Rahmen dieser Arbeit mit dem Isatin-Gerüst als potentiell neue photolabile Schutzgruppe durchgeführt.
Ebenfalls konnten in einer dritten Studie auf dem Gebiet der photolabilen Schutzgruppen Untersuchungen am Coumarin-Grundgerüst zeigen, dass eine systematische Einschränkung der Relaxationspfade im Molekül eine Verbesserung der photochemischen Eigenschaften mit sich bringen kann.
Photoaktivierbare Label werden in den verschiedensten Bereichen der Wissenschaft angewendet. Meist erlauben jedoch die chemischen Moleküle nur eine begrenzte „Beobachtungszeit“ der biochemischen Prozesse aufgrund der effizienten und damit schnellen Relaxationspfade zurück in den Grundzustand. Zu Beginn der durchgeführten Untersuchungen, bestand unsere Idee darin, die selektive Prä-IR-Anregung mit Hilfe eines UV/vis-Pulses (entsprechend der VIPER-Spektrokopie) in ein langlebiges Triplett-Signal eines geeigneten Chromophors zu überführen, welches anschließend für die Beobachtung vergleichsweise lang-lebiger biochemischer Prozesse verwendet werden könnte. Aus dieser Idee heraus entwickelten wir einen Chromophor, der neben einer Absorption im sichtbaren Bereich des elektromagnetischen Spektrums, zusätzlich eine IR-adressierbare funktionelle Gruppe, sowie die Eigenschaft, ein effizientes Inter-System-Crossing (ISC) nach photochemischer Anregung durchzuführen, besaß. Zu unserem Erstaunen zeigte dieses Derivat jedoch nach erfolgreicher Synthese nicht das erwartete Verhalten. Ein weiteres Beispiel für die hochgradige Komplexität der Photochemie.
Mit Hilfe von theoretischen und spektroskopischen Methoden konnten dennoch viele hilfreiche Erkenntnisse aus dieser Studie für zukünftige Untersuchungen aufgedeckt werden.
Ebenso war es während meiner Promotion eines der Ziele, den Schaltprozess des sog. Fulgid-Photoschalters genauer zu untersuchen und somit besser zu verstehen. Hierbei handelt es sich um ein ausgesprochen beständiges, photochemisch reversibel schaltbares Molekül, auch wenn dies vielleicht auf den ersten Blick ein Widerspruch in sich zu sein scheint. Es gelang uns diesen Photoschalter, genauer gesagt seine Photo-Isomere, auf dem Gebiet der chemischen Aktinometrie zu etablieren.
Dafür waren zahlreiche Messungen diverser Reaktivitäten (photochemische Reaktions-Quantenausbeuten) in verschiedenste Wellenlängenbereiche vom Nah-UV-Bereich bis hin zur 700 nm Grenze erforderlich. Außerdem wurden alle Werte mit der Referenzmessung einer Photodiode bzw. je nach Wellenlängenbereich auch mit der klassischen Ferri-Oxalat-Aktinometrie verglichen. Im Anschluss daran fokussierte ich mich weiter auf die einzelnen Photo-Isomere und ihre einzigartige chemische Struktur. Mit Hilfe der chiralen HPLC gelang es uns die einzelnen Photo-Isomere voneinander zu isolieren und diese mit verschiedensten photochemischen und theoretischen Methoden „genauer unter die Lupe“ zu nehmen. Die aus dieser Studie gewonnenen Erkenntnisse bereiten den Weg für diverse, zukünftige spektroskopische Anwendungen dieses Photoschalters.
In the development of photolabile protecting groups, it is of high interest to selectively modify photochemical properties with structural changes as simple as possible. In this work, knowledge of fluorophore optimization was adopted and used to design new coumarin- based photocages. Photolysis efficiency was selectively modulated by inactivating competitive decay channels, such as twisted intramolecular charge transfer (TICT) or hydrogen-bonding, and the photolytic release of the neurotransmitter serotonin was demonstrated. Structural modifications inspired by the fluorophore ATTO 390 led to a significant increase in the uncaging cross section that can be further improved by the simple addition of a double bond. Ultrafast transient absorption spectroscopy gave insights into the underlying solvent-dependent photophysical dynamics. The chromophores presented here are excellently suited as new photocages in the visible wavelength range due to their simple synthesis and their superior photochemical properties.
Electronic circular dichroism unravels atropisomers of a broadly absorbing fulgide derivative
(2022)
We prepared and studied six atropisomers with different chiroptical properties emerging from a single, robust, broadly-absorbing fulgide photoswitch. After separation of the different atropisomers via HPLC on a chiral column, their isomerization processes at room temperature and the energy barriers of the different species were investigated in detail using spectroscopic and theoretical methods.