Refine
Document Type
- Article (5)
- Contribution to a Periodical (1)
Has Fulltext
- yes (6)
Is part of the Bibliography
- no (6)
Keywords
- Extremereignis (1)
- Klimamodell (1)
- Klimaschutz (1)
- Klimawandel (1)
- climate change (1)
- ecometrics (1)
- scalability (1)
- species interactions (1)
- traits (1)
Institute
Dem Wandel rechtzeitig begegnen : Landesförderung ermöglicht richtungsweisende Klimafolgenforschung
(2008)
Climate change research is increasingly focusing on the dynamics among species, ecosystems and climates. Better data about the historical behaviours of these dynamics are urgently needed. Such data are already available from ecology, archaeology, palaeontology and geology, but their integration into climate change research is hampered by differences in their temporal and geographical scales. One productive way to unite data across scales is the study of functional morphological traits, which can form a common denominator for studying interactions between species and climate across taxa, across ecosystems, across space and through time—an approach we call ‘ecometrics’. The sampling methods that have become established in palaeontology to standardize over different scales can be synthesized with tools from community ecology and climate change biology to improve our understanding of the dynamics among species, ecosystems, climates and earth systems over time. Developing these approaches into an integrative climate change biology will help enrich our understanding of the changes our modern world is undergoing.
Yuanmou Basin of Yunnan, SW China, is a famous locality with hominids, hominoids, mammals and plant fossils. Based on the published megaflora and palynoflora data from Yuanmou Basin, the climate of Late Pliocene is reconstructed using the Coexistence Approach. The results indicate a warm and humid subtropical climate with a mean annual temperature of ca. 16–17°C and a mean annual precipitation of ca. 1500–1600 mm in the Late Pliocene rather than a dry, hot climate today, which may be due to the local tectonic change and gradual intensification of India monsoon. The comparison of Late Pliocene climate in Eryuan, Yangyi, Longling, and Yuanmou Basin of Yunnan Province suggests that the mean annual temperatures generally show a latitudinal gradient and fit well with their geographic position, while the mean annual precipitations seem to be related to the different geometries of the valleys under the same monsoon system.