Refine
Year of publication
Document Type
- Article (486)
- Preprint (331)
- Working Paper (1)
Language
- English (818)
Has Fulltext
- yes (818)
Is part of the Bibliography
- no (818)
Keywords
- BESIII (20)
- e +-e − Experiments (20)
- Branching fraction (15)
- Particle and Resonance Production (9)
- Quarkonium (7)
- Charm Physics (6)
- Spectroscopy (6)
- Hadronic decays (5)
- QCD (5)
- Branching fractions (4)
Institute
The first amplitude analysis of the decay D+s→K−K+π+π0 is presented using the data samples, corresponding to an integrated luminosity of 6.32 fb−1, collected with the BESIII detector at e+e− center-of-mass energies between 4.178 and 4.226 GeV. More than 3000 events selected with a purity of 97.5\% are used to perform the amplitude analysis, and nine components are found necessary to describe the data. Relative fractions and phases of the intermediate decays are determined. With the detection efficiency estimated by the results of the amplitude analysis, the branching fraction of D+s→K−K+π+π0 decay is measured to be (5.42±0.10stat.±0.17syst.)%.
We present the first amplitude analysis of the decay D+s→K−K+π+π0 using data samples of 6.32 fb−1 recorded with the BESIII detector between 4.178 and 4.226 GeV. More than 3000 events selected with a purity of 97.5\% are used to perform the amplitude analysis, and nine components are found necessary to describe the data. Relative fractions and phases of the intermediate decays are determined. With the detection efficiency determined by the results of the amplitude analysis, we measure the branching fraction of D+s→K−K+π+π0 decay to be (5.42±0.10stat.±0.17syst.)%.
The process e+e−→ϕη is studied at 22 center-of-mass energy points (√s) between 2.00 and 3.08 GeV using 715 pb−1 of data collected with the BESIII detector. The measured Born cross section of e+e−→ϕη is found to be consistent with BABAR measurements, but with improved precision. A resonant structure around 2.175 GeV is observed with a significance of 6.9σ with mass (2163.5±6.2±3.0) MeV/c2 and width (31.1+21.1−11.6±1.1) MeV, where the first uncertainties are statistical and the second are systematic.
Based on an e+e− collision data sample corresponding to an integrated luminosity of 2.93 fb−1 collected with the BESIII detector at √s=3.773 GeV, the first amplitude analysis of the singly Cabibbo-suppressed decay D+→K+K0Sπ0 is performed. From the amplitude analysis, the K∗(892)+K0S component is found to be dominant with a fraction of (57.1±2.6±4.2)%, where the first uncertainty is statistical and the second systematic. In combination with the absolute branching fraction B(D+→K+K0Sπ0) measured by BESIII, we obtain B(D+→K∗(892)+K0S)=(8.69±0.40±0.64±0.51)×10−3, where the third uncertainty is due to the branching fraction B(D+→K+K0Sπ0). The precision of this result is significantly improved compared to the previous measurement. This result also differs from most of theoretical predictions by about 4σ, which may help to improve the understanding of the dynamics behind.
We measure the inclusive semielectronic decay branching fraction of the D+s meson. A double-tag technique is applied to e+e− annihilation data collected by the BESIII experiment at the BEPCII collider, operating in the center-of-mass energy range 4.178–4.230 GeV. We select positrons fromD+s→Xe+νe with momenta greater than 200 MeV/c and determine the laboratory momentum spectrum, accounting for the effects of detector efficiency and resolution. The total positron yield and semielectronic branching fraction are determined by extrapolating this spectrum below the momentum cutoff. We measure the D+s semielectronic branching fraction to be(6.30±0.13(stat.)±0.09(syst.)±0.04(ext.))%, showing no evidence for unobserved exclusive semielectronic modes. We combine this result with external data taken from literature to determine the ratio of the D+s and D0 semielectronic widths, Γ(D+s→Xe+νe)Γ(D0→Xe+νe)=0.790±0.016(stat.)±0.011(syst.)±0.016(ext.). Our results are consistent with and more precise than previous measurements.
Using a sample of (10.09±0.04)×109 J/ψ events collected with the BESIII detector, a partial wave analysis of J/ψ→γη′η′ is performed.The masses and widths of the observed resonances and their branching fractions are reported. The main contribution is from J/ψ→γf0(2020) with f0(2020)→η′η′, which is found with a significance of greater than 25σ. The product branching fraction B(J/ψ → γf0(2020))⋅B(f0(2020) → η′η′ is measured to be (2.63±0.06(stat.) + 0.31−0.46(syst.))×10−4.
Though immensely successful, the standard model of particle physics does not offer any explanation as to why our Universe contains so much more matter than antimatter. A key to a dynamically generated matter–antimatter asymmetry is the existence of processes that violate the combined charge conjugation and parity (CP) symmetry1. As such, precision tests of CP symmetry may be used to search for physics beyond the standard model. However, hadrons decay through an interplay of strong and weak processes, quantified in terms of relative phases between the amplitudes. Although previous experiments constructed CP observables that depend on both strong and weak phases, we present an approach where sequential two-body decays of entangled multi-strange baryon–antibaryon pairs provide a separation between these phases. Our method, exploiting spin entanglement between the double-strange Ξ− baryon and its antiparticle2 Ξ¯+
, has enabled a direct determination of the weak-phase difference, (ξP − ξS) = (1.2 ± 3.4 ± 0.8) × 10−2 rad. Furthermore, three independent CP observables can be constructed from our measured parameters. The precision in the estimated parameters for a given data sample size is several orders of magnitude greater than achieved with previous methods3. Finally, we provide an independent measurement of the recently debated Λ decay parameter αΛ (refs. 4,5). The ΛΛ¯
asymmetry is in agreement with and compatible in precision to the most precise previous measurement.
A search for the charged lepton flavor violating decay 𝐽/𝜓→𝑒±𝜏∓ with 𝜏∓→𝜋∓𝜋0𝜈𝜏 is performed with about 10×109 𝐽/𝜓 events collected with the BESIII detector at the BEPCII. No significant signal is observed, and an upper limit is set on the branching fraction ℬ(𝐽/𝜓→𝑒±𝜏∓)<7.5×10−8 at the 90% confidence level. This improves the previously published limit by two orders of magnitude.
By analyzing an e+e− annihilation data sample corresponding to an integrated luminosity of 2.93 fb−1 collected at a center-of-mass energy of 3.773 GeV with the BESIII detector, we measure the branching fraction of the D0→ρ−μ+νμ decay for the first time. We obtain BD0→ρ−μ+νμ=(1.35±0.09stat±0.09syst)×10−3. Using the world average of BD0→ρ−e+νe, we find a branching fraction ratio of BD0→ρ−μ+νμ/BD0→ρ−e+νe=0.90±0.11, which agrees with the theoretical expectation of lepton flavor universality within the uncertainty. Combining the world average of BD+→ρ0μ+νμ and the lifetimes of D0(+), we obtain a partial decay width ratio of ΓD0→ρ−μ+νμ/(2ΓD+→ρ0μ+νμ)=0.71±0.14, which is consistent with the isospin symmetry expectation of one within 2.1σ. For the reported values of BD0→ρ−μ+νμ/BD0→ρ−e+νe and ΓD0→ρ−μ+νμ/2ΓD+→ρ0μ+νμ, the uncertainty is the quadratic sum of the statistical and systematic uncertainties.
By analyzing an e+e− annihilation data sample corresponding to an integrated luminosity of 2.93 fb−1 collected at a center-of-mass energy of 3.773 GeV with the BESIII detector, we measure the branching fraction of the D0→ρ−μ+νμ decay for the first time. We obtain BD0→ρ−μ+νμ=(1.35±0.09stat±0.09syst)×10−3. Using the world average of BD0→ρ−e+νe, we find a branching fraction ratio of BD0→ρ−μ+νμ/BD0→ρ−e+νe=0.90±0.11, which agrees with the theoretical expectation of lepton flavor universality within the uncertainty. Combining the world average of BD+→ρ0μ+νμ and the lifetimes of D0(+), we obtain a partial decay width ratio of ΓD0→ρ−μ+νμ/(2ΓD+→ρ0μ+νμ)=0.71±0.14, which is consistent with the isospin symmetry expectation of one within 2.1σ. For the reported values of BD0→ρ−μ+νμ/BD0→ρ−e+νe and ΓD0→ρ−μ+νμ/2ΓD+→ρ0μ+νμ, the uncertainty is the quadratic sum of the statistical and systematic uncertainties.