Refine
Year of publication
Document Type
- Article (584)
- Preprint (429)
- Working Paper (1)
Language
- English (1014)
Has Fulltext
- yes (1014)
Is part of the Bibliography
- no (1014)
Keywords
- BESIII (20)
- e +-e − Experiments (20)
- Branching fraction (15)
- Quarkonium (10)
- Particle and Resonance Production (9)
- Charm Physics (7)
- QCD (7)
- Hadron-Hadron Scattering (6)
- Spectroscopy (6)
- Hadronic decays (5)
Institute
Using (10087±44)×106 J/ψ events collected with the BESIII detector, numerous Ξ− and Λ decay asymmetry parameters are simultaneously determined from the process J/ψ→Ξ−Ξ¯+→Λ(pπ−)π−Λ¯(n¯π0)π+ and its charge-conjugate channel. The precisions of α0 for Λ→nπ0 and α¯0 for Λ¯→n¯π0 compared to world averages are improved by factors of 4 and 1.7, respectively. The ratio of decay asymmetry parameters of Λ→nπ0 to that of Λ→pπ−, ⟨α0⟩/⟨αΛ−⟩, is determined to be 0.873±0.012+0.011−0.010, where the first and the second uncertainties are statistical and systematic, respectively. The ratio is smaller than unity more than 5σ, which signifies the existence of the ΔI=3/2 transition in Λ for the first time. Beside, we test for CP violation in Ξ−→Λπ− and in Λ→nπ0 with the best precision to date.
Using (10087±44)×106 J/ψ events collected with the BESIII detector, numerous Ξ− and Λ decay asymmetry parameters are simultaneously determined from the process J/ψ→Ξ−Ξ¯+→Λ(pπ−)π−Λ¯(n¯π0)π+ and its charge-conjugate channel. The precisions of α0 for Λ→nπ0 and α¯0 for Λ¯→n¯π0 compared to world averages are improved by factors of 4 and 1.7, respectively. The ratio of decay asymmetry parameters of Λ→nπ0 to that of Λ→pπ−, ⟨α0⟩/⟨αΛ−⟩, is determined to be 0.873±0.012+0.011−0.010, where the first and the second uncertainties are statistical and systematic, respectively. The ratio is smaller than unity, which is predicted by the ΔI=1/2 rule, with a statistical significance of more than 5σ. We test for CP violation in Ξ−→Λπ− and in Λ→nπ0 with the best precision to date.
We present cross sections for the reaction e+e−→K0SK0L at center-of-mass energies ranging from 3.51 GeV to 4.95 GeV using data samples collected in the BESIII experiment, corresponding to a total integrated luminosity of 26.5 fb−1. The ratio of neutral-to-charged kaon form factors at large momentum transfers (12 GeV2<Q2<25 GeV2) is determined to be 0.21±0.01, which indicates a small but significant effect of flavor-SU(3) breaking in the kaon wave function, and consequently excludes the possibility that flavor-SU(3) breaking is the primary reason for the strong experimental violation of the pQCD prediction |F(π±)|/|F(K±)|=f2π/f2K, where F(π±) and F(K±) are the form factors, and fπ and fK are the decay constants of charged pions and kaons, respectively. We also observe a significant signal for the charmless decay ψ(3770)→K0SK0L for the first time. Within a 1σ contour of the likelihood value, the the branching fraction for ψ(3770)→K0SK0L is determined to be B=(2.63+1.40−1.59)×10−5, and the relative phase between the continuum and ψ(3770) amplitudes is ϕ=(−0.39+0.05−0.10)π. The branching fraction is in good agreement with the S- and D-wave charmonia mixing scheme proposed in the interpretation of the "ρπ puzzle" between J/ψ and ψ(3686) decays.
Based on data samples collected with the BESIII detector at the BEPCII collider, the process e+e−→Σ+Σ¯− is studied at center-of-mass energies s√ = 2.3960, 2.6454, and 2.9000~GeV. Using a fully differential angular description of the final state particles, the complete information of the Σ+ electromagnetic form factors in the time-like region is extracted. The relative phase between the electric and magnetic form factors is determined to be sinΔΦ = -0.67~±~0.29~(stat.)~±~0.18~(syst.) at s√ = 2.3960~GeV, ΔΦ = 55∘~±~19∘~(stat.) ±~14∘~(syst.) at s√ = 2.6454~GeV, and 78∘~±~22∘~(stat.) ±~9∘~(syst.) at s√ = 2.9000~GeV. For the first time, the phase of the hyperon electromagnetic form factors is explored in a wide range of four-momentum transfer. The evolution of the phase along with four-momentum transfer is an important input for understanding its asymptotic behavior and the dynamics of baryons.
Based on data samples collected with the BESIII detector at the BEPCII collider, the process e+e−→Σ+Σ¯− is studied at center-of-mass energies s√ = 2.3960, 2.6454, and 2.9000 GeV. Using a fully differential angular description of the final state particles, both the relative magnitude and phase information of the Σ+ electromagnetic form factors in the timelike region are extracted. The relative phase between the electric and magnetic form factors is determined to be sinΔΦ = -0.67~±~0.29~(stat)~±~0.18~(syst) at s√ = 2.3960 GeV, ΔΦ = 55∘~±~19∘~(stat) ±~14∘~(syst) at s√ = 2.6454 GeV, and 78∘~±~22∘~(stat) ±~9∘~(syst) at s√ = 2.9000 GeV. For the first time, the phase of the hyperon electromagnetic form factors is explored in a wide range of four-momentum transfer. The evolution of the phase along with four-momentum transfer is an important input for understanding its asymptotic behavior and the dynamics of baryons.
Based on data samples collected with the BESIII detector at the BEPCII collider, the process e+e−→Σ+Σ¯− is studied at center-of-mass energies s√ = 2.3960, 2.6454, and 2.9000~GeV. Using a fully differential angular description of the final state particles, the complete information of the Σ+ electromagnetic form factors in the time-like region is extracted. The relative phase between the electric and magnetic form factors is determined to be sinΔΦ = -0.67~±~0.29~(stat.)~±~0.18~(syst.) at s√ = 2.3960~GeV, ΔΦ = 55∘~±~19∘~(stat.) ±~14∘~(syst.) at s√ = 2.6454~GeV, and 78∘~±~22∘~(stat.) ±~9∘~(syst.) at s√ = 2.9000~GeV. For the first time, the phase of the hyperon electromagnetic form factors is explored in a wide range of four-momentum transfer. The evolution of the phase along with four-momentum transfer is an important input for understanding its asymptotic behavior and the dynamics of baryons.
We search for the di-photon decay of a light pseudoscalar axion-like particle, a, in radiative J/ψ decays, using 10 billion J/ψ events collected with the BESIII detector. We find no evidence of a signal and set upper limits at the 95% confidence level on the product branching fraction B(J/ψ→γa)×B(a→γγ) and the axion-like particle photon coupling constant gaγγ in the ranges of (3.7−48.5)×10−8 and (2.2−101.8)×10−4 GeV−1, respectively, for 0.18≤ma≤2.85 GeV/c2. These are the most stringent limits to date in this mass region.
We search for the di-photon decay of a light pseudoscalar axion-like particle, a, in radiative decays of the J/ψ, using 10 billion J/ψ events collected with the BESIII detector. We find no evidence of a narrow resonance and set upper limits at the 95% confidence level on the product branching fraction B(J/ψ→γa)×B(a→γγ) and the axion-like particle photon coupling constant gaγγ in the ranges of (3.6−49.8)×10−8 and (2.2−103.8)×10−4 GeV−1, respectively, for 0.18≤ma≤2.85 GeV/c2. These are the most stringent limits to date in this mass region.
We search for the di-photon decay of a light pseudoscalar axion-like particle, a, in radiative J/ψ decays, using 10 billion J/ψ events collected with the BESIII detector. We find no evidence of a signal and set upper limits at the 95% confidence level on the product branching fraction B(J/ψ→γa)×B(a→γγ) and the axion-like particle photon coupling constant gaγγ in the ranges of (3.7−48.5)×10−8 and (2.2−101.8)×10−4 GeV−1, respectively, for 0.18≤ma≤2.85 GeV/c2. These are the most stringent limits to date in this mass region.
We study the electromagnetic Dalitz decay J/ψ→e+e−π0 using (10087±44)×106 J/ψ events collected by the \bes detector. The di-electron-invariant-mass dependent transition form factor of this decay is explored for the first time. A significant resonant structure corresponding to the ρ/ω resonance is observed, which cannot be described by existing theoretical models, due to contributions from the isospin-conserving J/ψ→ρπ0 and isospin-volating J/ψ→ωπ0 decays. The observed ρ--ω interference is consistent with that of the pion form factor but features a relatively narrow ρ peak. By taking into account the contribution of this resonant structure, the branching fraction of J/ψ→e+e−π0 in the full e+e− invariant mass spectrum range is also measured for the first time to be (8.06±0.31(stat)±0.38(syst))×10−7, which is two times larger than the prediction of the Vector Meson Dominance model due to the observed resonant contribution of ρ/ω resonances.