Refine
Year of publication
Language
- English (1023)
Has Fulltext
- yes (1023)
Is part of the Bibliography
- no (1023)
Keywords
- BESIII (20)
- e +-e − Experiments (20)
- Branching fraction (15)
- LHC (10)
- Particle and Resonance Production (9)
- Quarkonium (9)
- Charm Physics (6)
- Heavy-ion collisions (6)
- Spectroscopy (6)
- Hadronic decays (5)
Institute
Using (10087±44)×106 J/ψ events collected with the BESIII detector, numerous Ξ− and Λ decay asymmetry parameters are simultaneously determined from the process J/ψ→Ξ−Ξ¯+→Λ(pπ−)π−Λ¯(n¯π0)π+ and its charge-conjugate channel. The precisions of α0 for Λ→nπ0 and α¯0 for Λ¯→n¯π0 compared to world averages are improved by factors of 4 and 1.7, respectively. The ratio of decay asymmetry parameters of Λ→nπ0 to that of Λ→pπ−, ⟨α0⟩/⟨αΛ−⟩, is determined to be 0.873±0.012+0.011−0.010, where the first and the second uncertainties are statistical and systematic, respectively. The ratio is smaller than unity more than 5σ, which signifies the existence of the ΔI=3/2 transition in Λ for the first time. Beside, we test for CP violation in Ξ−→Λπ− and in Λ→nπ0 with the best precision to date.
Using (10087±44)×106 J/ψ events collected with the BESIII detector, numerous Ξ− and Λ decay asymmetry parameters are simultaneously determined from the process J/ψ→Ξ−Ξ¯+→Λ(pπ−)π−Λ¯(n¯π0)π+ and its charge-conjugate channel. The precisions of α0 for Λ→nπ0 and α¯0 for Λ¯→n¯π0 compared to world averages are improved by factors of 4 and 1.7, respectively. The ratio of decay asymmetry parameters of Λ→nπ0 to that of Λ→pπ−, ⟨α0⟩/⟨αΛ−⟩, is determined to be 0.873±0.012+0.011−0.010, where the first and the second uncertainties are statistical and systematic, respectively. The ratio is smaller than unity, which is predicted by the ΔI=1/2 rule, with a statistical significance of more than 5σ. We test for CP violation in Ξ−→Λπ− and in Λ→nπ0 with the best precision to date.
Based on e+e− collision data collected at center-of-mass energies from 2.000 to 3.080 GeV by the BESIII detector at the BEPCII collider, a partial wave analysis is performed for the process e+e−→K0SK0Lπ0. The results allow the Born cross sections of the process e+e−→K0SK0Lπ0, as well as its subprocesses e+e−→K∗(892)0K¯ and K∗2(1430)0K¯ to be measured. The Born cross sections for e+e−→K0SK0Lπ0 are consistent with previous measurements by BaBar and SND, but with substantially improved precision. The Born cross section lineshape of the process e+e−→K∗(892)0K¯ is consistent with a vector meson state around 2.2 GeV with a statistical significance of 3.2σ. A Breit-Wigner fit determines its mass as MY=(2164.1±9.6±3.1) MeV/c2 and its width as ΓY=(32.4±21.1±1.5) MeV, where the first uncertainties are statistical and the second ones are systematic, respectively.
We measured the Born cross sections for the process e+e− → ωη′ at 22 center-of-mass energies from 2.000 to 3.080 GeV with the BESIII detector at the BEPCII collider. We observed a resonant structure with a statistical significance of 9.6σ. A Breit-Wigner fit determines its mass to be MR = (2153 ± 30 ± 31) MeV/c2 and its width to be ΓR = (167 ± 77 ± 7) MeV, where the first uncertainties are statistical and the second are systematic.
Using (10087±44)×106 J/ψ events collected with the BESIII detector, numerous Ξ− and Λ decay asymmetry parameters are simultaneously determined from the process J/ψ→Ξ−Ξ¯+→Λ(pπ−)π−Λ¯(n¯π0)π+ and its charge-conjugate channel. The precisions of α0 for Λ→nπ0 and α¯0 for Λ¯→n¯π0 compared to world averages are improved by factors of 4 and 1.7, respectively. The ratio of decay asymmetry parameters of Λ→nπ0 to that of Λ→pπ−, ⟨α0⟩/⟨αΛ−⟩, is determined to be 0.873±0.012+0.011−0.010, where the first and the second uncertainties are statistical and systematic, respectively. The ratio is smaller than unity more than 5σ, which signifies the existence of the ΔI=3/2 transition in Λ for the first time. Beside, we test for CP violation in Ξ−→Λπ− and in Λ→nπ0 with the best precision to date.
Precision measurements of the semileptonic decays 𝐷+𝑠→𝜂𝑒+𝜈𝑒 and 𝐷+𝑠→𝜂′𝑒+𝜈𝑒 are performed with 7.33 fb−1 of 𝑒+𝑒− collision data collected at center-of-mass energies between 4.128 and 4.226 GeV with the BESIII detector. The branching fractions obtained are ℬ(𝐷+𝑠→𝜂𝑒+𝜈𝑒) = (2.255±0.039stat±0.051syst)% and ℬ(𝐷+𝑠→𝜂′𝑒+𝜈𝑒)=(0.810±0.038stat±0.024syst)%. Combining these results with the ℬ(𝐷+→𝜂𝑒+𝜈𝑒) and ℬ(𝐷+→𝜂′𝑒+𝜈𝑒) obtained from previous BESIII measurements, the 𝜂−𝜂′ mixing angle in the quark flavor basis is determined to be 𝜙P=(40.0±2.0stat±0.6syst)°. Moreover, from the fits to the partial decay rates of 𝐷+𝑠→𝜂𝑒+𝜈𝑒 and 𝐷+𝑠→𝜂′𝑒+𝜈𝑒, the products of the hadronic transition form factors 𝑓𝜂(′)+(0) and the modulus of the 𝑐→𝑠 Cabibbo-Kobayashi-Maskawa matrix element |𝑉𝑐𝑠| are determined by using different hadronic transition form factor parametrizations. Based on the two-parameter series expansion, the products 𝑓𝜂+(0)|𝑉𝑐𝑠| = 0.4519±0.0071stat±0.0065syst and 𝑓𝜂′+(0)|𝑉𝑐𝑠| = 0.525±0.024stat±0.009syst are extracted. All results determined in this work supersede those measured in the previous BESIII analyses based on the 3.19 fb−1 subsample of data at 4.178 GeV.
Using (1.0087±0.0044)×1010 𝐽/𝜓 events collected by the BESIII detector at the BEPCII collider, we report the first search for the baryon and lepton number violating decays Ξ0→𝐾−𝑒+ with Δ(𝐵−𝐿)=0 and Ξ0→𝐾+𝑒− with |Δ(𝐵−𝐿)|=2, where 𝐵 (𝐿) is the baryon (lepton) number. While no signal is observed, the upper limits on the branching fractions of these two decays are set to ℬ(Ξ0→𝐾−𝑒+)<3.6×10−6 and ℬ(Ξ0→𝐾+𝑒−)<1.9×10−6 at the 90% confidence level, respectively. These results offer a direct probe of baryon number violating interactions involving a strange quark.
Determination of U-spin breaking parameters with an amplitude analysis of the decay D⁰ → K⁰Lπ⁺π⁻
(2022)
We present a study of the resonant structure of the decay D0→K0Lπ+π−, using quantum-correlated D0D¯0 data produced at s√=3.773 GeV. The data sample was collected by the BESIII experiment and corresponds to an integrated luminosity of 2.93 fb−1. This study is the first amplitude analysis of a decay mode involving a K0L, which also results in the first measurement of the complex U-spin breaking parameters (ρ^) related to various CP-eigenstate resonant modes through which the three-body decay proceeds. The moduli of the ρ^ parameters have central values in a wide range from 0.4 to 12.1, which indicates substantial U-spin symmetry breaking. We present the fractional resonant contributions and average strong-phase parameters over regions of phase space for both K0Sπ+π− and K0Lπ+π− modes. We also report the ratio of the branching fractions between K0Lπ+π− and K0Sπ+π− decay modes and the CP-even fraction of the K0Lπ+π− state calculated using the U-spin breaking parameters.
The quantum entangled J/ψ→Σ+Σ¯− pairs from (1.0087±0.0044)×1010 J/ψ events taken by the BESIII detector are used to study the non-leptonic two-body weak decays Σ+→nπ+ and Σ¯−→n¯π−. The CP-odd weak decay parameters of the decays Σ+→nπ+ (α+) and Σ¯−→n¯π− (α¯−) are determined to be −0.0565±0.0047stat±0.0022syst and 0.0481±0.0031stat±0.0019syst, respectively. The decay parameter α¯− is measured for the first time, and the accuracy of α+ is improved by a factor of four compared to the previous results. The simultaneously determined decay parameters allow the first precision CP symmetry test for any hyperon decay with a neutron in the final state with the measurement of ACP=(α++α¯−)/(α+−α¯−) = −0.080±0.052stat±0.028syst. Assuming CP conservation, the average decay parameter is determined as ⟨α+⟩=(α+−α¯−)/2 = −0.0506±0.0026stat±0.0019syst, while the ratios α+/α0 and α¯−/α¯0 are −0.0490±0.0032stat±0.0021syst and −0.0571±0.0053stat±0.0032syst, where α0 and α¯0 are the decay parameters of the decays Σ+→pπ0 and Σ¯−→p¯π0, respectively.
Using a data sample corresponding to an integrated luminosity of 2.93 fb−1 collected at a center-of-mass energy of 3.773~GeV with the BESIII detector at the BEPCII collider, we search for a scalar partner of the X(3872), denoted as X(3700), via ψ(3770)→γηη′ and γπ+π−J/ψ processes. No significant signals are observed and the upper limits of the product branching fractions B(ψ(3770)→γX(3700))⋅B(X(3700)→ηη′) and B(ψ(3770)→γX(3700))⋅B(X(3700)→π+π−J/ψ) are determined at the 90\% confidence level, for the narrow X(3700) with a mass ranging from 3710 to 3740 MeV/c2, which are from 0.8 to 1.8 (×10−5) and 0.9 to 3.4 (×10−5), respectively.