Refine
Document Type
- Article (4)
- Doctoral Thesis (1)
- Preprint (1)
Language
- English (6)
Has Fulltext
- yes (6)
Is part of the Bibliography
- no (6)
Keywords
- Behavioral analysis (1)
- C. elegans (1)
- Ca2+ imaging (1)
- Cellular neuroscience (1)
- Gap junctions (1)
- Locomotor circuit (1)
- Molecular Neuroscience (1)
- Neuroscience (1)
- Optogenetics (1)
- Research article (1)
Institute
Release of neuropeptides from dense core vesicles (DCVs) is essential for neuromodulation. Compared to the release of small neurotransmitters, much less is known about the mechanisms and proteins contributing to neuropeptide release. By optogenetics, behavioral analysis, electrophysiology, electron microscopy, and live imaging, we show that synapsin SNN-1 is required for cAMP-dependent neuropeptide release in Caenorhabditis elegans hermaphrodite cholinergic motor neurons. In synapsin mutants, behaviors induced by the photoactivated adenylyl cyclase bPAC, which we previously showed to depend on acetylcholine and neuropeptides (Steuer Costa et al., 2017), are altered like in animals with reduced cAMP. Synapsin mutants have slight alterations in synaptic vesicle (SV) distribution, however, a defect in SV mobilization was apparent after channelrhodopsin-based photostimulation. DCVs were largely affected in snn-1 mutants: DCVs were ∼30% reduced in synaptic terminals, and not released following bPAC stimulation. Imaging axonal DCV trafficking, also in genome-engineered mutants in the serine-9 protein kinase A phosphorylation site, showed that synapsin captures DCVs at synapses, making them available for release. SNN-1 co-localized with immobile, captured DCVs. In synapsin deletion mutants, DCVs were more mobile and less likely to be caught at release sites, and in non-phosphorylatable SNN-1B(S9A) mutants, DCVs traffic less and accumulate, likely by enhanced SNN-1 dependent tethering. Our work establishes synapsin as a key mediator of neuropeptide release.
C. elegans is used extensively as a model system in the neurosciences due to its well defined nervous system. However, the seeming simplicity of this nervous system in anatomical structure and neuronal connectivity, at least compared to higher animals, underlies a rich diversity of behaviors. The usefulness of the worm in genome-wide mutagenesis or RNAi screens, where thousands of strains are assessed for phenotype, emphasizes the need for computational methods for automated parameterization of generated behaviors. In addition, behaviors can be modulated upon external cues like temperature, O2 and CO2 concentrations, mechanosensory and chemosensory inputs. Different machine vision tools have been developed to aid researchers in their efforts to inventory and characterize defined behavioral “outputs”. Here we aim at providing an overview of different worm-tracking packages or video analysis tools designed to quantify different aspects of locomotion such as the occurrence of directional changes (turns, omega bends), curvature of the sinusoidal shape (amplitude, body bend angles) and velocity (speed, backward or forward movement).
Cardiac arrhythmias are often associated with mutations in ion channels or other proteins. To enable drug development for distinct arrhythmias, model systems are required that allow implementing patient-specific mutations. We assessed a muscular pump in Caenorhabditis elegans. The pharynx utilizes homologues of most of the ion channels, pumps and transporters defining human cardiac physiology. To yield precise rhythmicity, we optically paced the pharynx using channelrhodopsin-2. We assessed pharynx pumping by extracellular recordings (electropharyngeograms--EPGs), and by a novel video-microscopy based method we developed, which allows analyzing multiple animals simultaneously. Mutations in the L-type VGCC (voltage-gated Ca(2+)-channel) EGL-19 caused prolonged pump duration, as found for analogous mutations in the Cav1.2 channel, associated with long QT syndrome. egl-19 mutations affected ability to pump at high frequency and induced arrhythmicity. The pharyngeal neurons did not influence these effects. We tested whether drugs could ameliorate arrhythmia in the optogenetically paced pharynx. The dihydropyridine analog Nemadipine A prolonged pump duration in wild type, and reduced or prolonged pump duration of distinct egl-19 alleles, thus indicating allele-specific effects. In sum, our model may allow screening of drug candidates affecting specific VGCCs mutations, and permit to better understand the effects of distinct mutations on a macroscopic level.
This thesis reports on the results obtained by expression photoactivatable adenylyl cyclase from Beggiatoa spp. (bPAC) in cholinergic neurons from Caenorhabditis elegans (C. elegans) and the characterization of the role of a single neuron, RIS, during locomotion in the adult animal.
Pharmacological activation of adenylyl cyclases through Forskolin is known to induce increased neuronal output in diverse model organisms through a protein kinase A (PKA) dependent mechanism. Nevertheless, pharmacological assays are not spatially restricted, do not allow for precise and acute activation nor to cessation of the signal. Thus, an optogenetic approach for was selected trough the expression of photoactivatable adenylyl cyclase from Beggiatoa spp. (bPAC) in cholinergic neurons of Caenorhabditis elegans (C. elegans). This model organism was chosen due to its transparency, ease of maintenance, fast generation cycles as well as for being an eutelic animal. Further, its genome has been fully sequenced and the connectome of the neuronal network is known, thus allowing for precise analysis of neuronal function. Furthermore, the molecular mechanisms governing neuronal functions are well conserved up to primates. Mainly two optogenetical tools were applied, bPAC and the light gated cation channel channelrhodopsin 2 (ChR2).
Behavioral assays of bPAC photostimulation in cholinergic neurons recapitulated previous work performed with the photoactivatable adenylyl cyclase from Euglena gracilis (EuPACa), in which swimming frequency and speed on solid substrate were increased. Electrophysiological recordings of body wall muscle (BWM) cells by Dr. Jana F. Liewald showed that bPAC photoactivation led to an increase in miniature postsynaptic current (mPSC) rate and, in contrast to ChR2 invoked depolarization, also amplitude. Analysis of mutants deficient in neuropeptidergic signaling (UNC- 31) via electrophysiology performed by Dr. Jana F. Liewald showed that the increase in mPSC amplitude due to bPAC photoactivation requires neuropeptide release. This was confirmed by co-expression of bPAC with the neuropeptide marker NLP-21::Venus and subsequent fluorescence analysis of release, exploiting the fact that released neuropeptides are ultimately degraded by scavenger cells (coelomocytes). These were enriched with NLP-21::Venus after bPAC photostimulation, but no fluorescence could be observed in the UNC-31 mutants.
Additional analysis of the electrophysiological data performed by myself showed no modulation of mPSC kinetics dues to neuropeptidergic release induced by bPAC. Hence, neuropeptide release and action sites were in the cholinergic neurons, the latter including cholinergic motoneurons.
Dr. Szi-chieh Yu provided electron microscopy images of high pressure frozen, bPAC or ChR2 expressing animals. These were tagged by myself for automatic analysis of ultrastructural properties of the cholinergic presynapse, also during photoactivation of both optogenetic tools. Photoactivation of both induced a reduction of synaptic vesicles, with ChR2 showing a more severe effect. In contrast to ChR2, though, bPAC also reduced the amount of dense core vesicles (DCV), the neuropeptide transporters. Additionally, long bPAC photoactivation as well as ChR2 photoactivation led to the appearance of large vesicles (LV), presumably in response to the increased SV fusion rate. bPAC photostimulation also induced an increase in SV size, not observed after ChR2 photostimulation. In UNC-31 mutants, bPAC photostimulation could not lead to the SV size increase, a further argument for the presynaptic effect of the released neuropeptide. Additional analysis of electrophysiology paired with pharmacology, performed by Dr. Jana F. Liewald, showed that mPSC amplitude increase requires the function of the vesicular acetylcholine transporter.
A further effect observed in the ultrastructure of bPAC photostimulated cholinergic presynapses was a shift in the distribution of SV regarding the dense projection. An analysis of cAMP pathway mutants showed that synapsin is required for bPAC induced behavior effects. Synapsin is known to mediate SV tethering to the cytoskeleton. Here, I show evidence for a new role of synapsin in controlling the availability of DCVs for fusion and thus, in neuropeptidergic signaling.
In the second part of my thesis I characterized the function of the GABAergic interneuron RIS in the neuronal network of C. elegans. RIS was shown to induce lethargus, a sleep-like state, during all larval molts, but its function in the adult animal was not yet described. Specific RIS expression of ChR2 achieved by a recombinase based system allowed to acutely depolarize the neuron during locomotion, which led to an acute behavioral stop. Diverse signal transduction pathway mutants were analyzed showing that the phenotype was induced by neuropeptidergic signaling. Through mutagenesis followed by whole genome sequencing data analysis as well as analysis of RIS specific RNA sequencing data further narrowed the signal transduction pathway to mediate the locomotion stop behavior. Since the neuropeptide and, to some extent, the neuron are conserved across nematodes, an argument is outlined in favor of the conservation of this sleep-like state.
In addition, since ChR2 could induce neuropeptidergic signaling from RIS, secretion of vesicles is regulated by variable pathways depending on the neuronal identity. Nevertheless, expression of bPAC in RIS allowed to optogenetically increase the probability of short stops, as observed by expression of a calcium sensor (GCaMP) in RIS and analysis of its intrinsic activity in the adult animal.
Locomotion circuits developed in simple animals, and circuit motifs further evolved in higher animals. To understand locomotion circuit motifs, they must be characterized in many models. The nematode Caenorhabditis elegans possesses one of the best-studied circuits for undulatory movement. Yet, for 1/6th of the cholinergic motor neurons (MNs), the AS MNs, functional information is unavailable. Ventral nerve cord (VNC) MNs coordinate undulations, in small circuits of complementary neurons innervating opposing muscles. AS MNs differ, as they innervate muscles and other MNs asymmetrically, without complementary partners. We characterized AS MNs by optogenetic, behavioral and imaging analyses. They generate asymmetric muscle activation, enabling navigation, and contribute to coordination of dorso-ventral undulation as well as anterio-posterior bending wave propagation. AS MN activity correlated with forward and backward locomotion, and they functionally connect to premotor interneurons (PINs) for both locomotion regimes. Electrical feedback from AS MNs via gap junctions may affect only backward PINs.
Rhodopsin-based voltage imaging tools for use in muscles and neurons of Caenorhabditis elegans
(2019)
Genetically encoded voltage indicators (GEVIs) based on microbial rhodopsins utilize the voltage-sensitive fluorescence of all-trans retinal (ATR), while in electrochromic FRET (eFRET) sensors, donor fluorescence drops when the rhodopsin acts as depolarization-sensitive acceptor. In recent years, such tools have become widely used in mammalian cells but are less commonly used in invertebrate systems, mostly due to low fluorescence yields. We systematically assessed Arch(D95N), Archon, QuasAr, and the eFRET sensors MacQ-mCitrine and QuasAr-mOrange, in the nematode Caenorhabditis elegans ATR-bearing rhodopsins reported on voltage changes in body wall muscles (BWMs), in the pharynx, the feeding organ [where Arch(D95N) showed approximately 128% ΔF/F increase per 100 mV], and in neurons, integrating circuit activity. ATR fluorescence is very dim, yet, using the retinal analog dimethylaminoretinal, it was boosted 250-fold. eFRET sensors provided sensitivities of 45 to 78% ΔF/F per 100 mV, induced by BWM action potentials, and in pharyngeal muscle, measured in simultaneous optical and sharp electrode recordings, MacQ-mCitrine showed approximately 20% ΔF/F per 100 mV. All sensors reported differences in muscle depolarization induced by a voltage-gated Ca2+-channel mutant. Optogenetically evoked de- or hyperpolarization of motor neurons increased or eliminated action potential activity and caused a rise or drop in BWM sensor fluorescence. Finally, we analyzed voltage dynamics across the entire pharynx, showing uniform depolarization but compartmentalized repolarization of anterior and posterior parts. Our work establishes all-optical, noninvasive electrophysiology in live, intact C. elegans.