Refine
Document Type
- Article (4)
Language
- English (4)
Has Fulltext
- yes (4)
Is part of the Bibliography
- no (4)
Keywords
Institute
- Medizin (4)
- Erziehungswissenschaften (1)
Objective To explore factors that potentially impact external validation performance while developing and validating a prognostic model for hospital admissions (HAs) in complex older general practice patients.
Study design and setting Using individual participant data from four cluster-randomised trials conducted in the Netherlands and Germany, we used logistic regression to develop a prognostic model to predict all-cause HAs within a 6-month follow-up period. A stratified intercept was used to account for heterogeneity in baseline risk between the studies. The model was validated both internally and by using internal-external cross-validation (IECV).
Results Prior HAs, physical components of the health-related quality of life comorbidity index, and medication-related variables were used in the final model. While achieving moderate discriminatory performance, internal bootstrap validation revealed a pronounced risk of overfitting. The results of the IECV, in which calibration was highly variable even after accounting for between-study heterogeneity, agreed with this finding. Heterogeneity was equally reflected in differing baseline risk, predictor effects and absolute risk predictions.
Conclusions Predictor effect heterogeneity and differing baseline risk can explain the limited external performance of HA prediction models. With such drivers known, model adjustments in external validation settings (eg, intercept recalibration, complete updating) can be applied more purposefully.
Trial registration number PROSPERO id: CRD42018088129.
Background: Cumulative anticholinergic exposure, also known as anticholinergic burden, is associated with a variety of adverse outcomes. However, studies show that anticholinergic effects tend to be underestimated by prescribers, and anticholinergics are the most frequently prescribed potentially inappropriate medication in older patients. The grading systems and drugs included in existing scales to quantify anticholinergic burden differ considerably and do not adequately account for patients’ susceptibility to medications. Furthermore, their ability to link anticholinergic burden with adverse outcomes such as falls is unclear. This study aims to develop a prognostic model that predicts falls in older general practice patients, to assess the performance of several anticholinergic burden scales, and to quantify the added predictive value of anticholinergic symptoms in this context.
Methods: Data from two cluster-randomized controlled trials investigating medication optimization in older general practice patients in Germany will be used. One trial (RIME, n = 1,197) will be used for the model development and the other trial (PRIMUM, n = 502) will be used to externally validate the model. A priori, candidate predictors will be selected based on a literature search, predictor availability, and clinical reasoning. Candidate predictors will include socio-demographics (e.g. age, sex), morbidity (e.g. single conditions), medication (e.g. polypharmacy, anticholinergic burden as defined by scales), and well-being (e.g. quality of life, physical function). A prognostic model including sociodemographic and lifestyle-related factors, as well as variables on morbidity, medication, health status, and well-being, will be developed, whereby the prognostic value of extending the model to include additional patient-reported symptoms will be also assessed. Logistic regression will be used for the binary outcome, which will be defined as “no falls” vs. “≥1 fall” within six months of baseline, as reported in patient interviews. Discussion: As the ability of different anticholinergic burden scales to predict falls in older patients is unclear, this study may provide insights into their relative importance as well as into the overall contribution of anticholinergic symptoms and other patient characteristics. The results may support general practitioners in their clinical decision-making and in prescribing fewer medications with anticholinergic properties.
Background: Patients with chronic kidney disease (CKD) are at increased risk for inappropriate or potentially harmful prescribing. The aim of this study was to examine whether a multifaceted intervention including the use of a software programme for the estimation of creatinine clearance and recommendation of individual dosage requirements may improve correct dosage adjustment of relevant medications for patients with CKD in primary care.
Methods: A cluster-randomized controlled trial was conducted between January and December 2007 in small primary care practices in Germany. Practices were randomly allocated to intervention or control groups. In each practice, we included patients with known CKD and elderly patients (>=70 years) suffering from hypertension. The practices in the intervention group received interactive training and were provided a software programme to assist with individual dose adjustment. The control group performed usual care. Data were collected at baseline and at 6 months. The outcome measures, analyzed across individual patients, included prescriptions exceeding recommended maximum daily doses, with the primary outcome being prescriptions exceeding recommended standard daily doses by 30% or more.
Results: Data from 44 general practitioners and 404 patients are included. The intervention was effective in reducing prescriptions exceeding the maximum daily dose per patients, with a trend in reducing prescriptions exceeding the standard daily dose by more than 30%.
Conclusions: A multifaceted intervention including the use of a software program effectively reduced inappropriately high doses of renally excreted medications in patients with CKD in the setting of small primary care practices.
Objectives: Investigate the effectiveness of a complex intervention aimed at improving the appropriateness of medication in older patients with multimorbidity in general practice.
Design: Pragmatic, cluster randomised controlled trial with general practice as unit of randomisation.
Setting: 72 general practices in Hesse, Germany.
Participants: 505 randomly sampled, cognitively intact patients (≥60 years, ≥3 chronic conditions under pharmacological treatment, ≥5 long-term drug prescriptions with systemic effects); 465 patients and 71 practices completed the study.
Interventions: Intervention group (IG): The healthcare assistant conducted a checklist-based interview with patients on medication-related problems and reconciled their medications. Assisted by a computerised decision support system, the general practitioner optimised medication, discussed it with patients and adjusted it accordingly. The control group (CG) continued with usual care.
Outcome measures: The primary outcome was a modified Medication Appropriateness Index (MAI, excluding item 10 on cost-effectiveness), assessed in blinded medication reviews and calculated as the difference between baseline and after 6 months; secondary outcomes after 6 and 9 months’ follow-up: quality of life, functioning, medication adherence, and so on.
Results: At baseline, a high proportion of patients had appropriate to mildly inappropriate prescriptions (MAI 0–5 points: n=350 patients). Randomisation revealed balanced groups (IG: 36 practices/252 patients; CG: 36/253). Intervention had no significant effect on primary outcome: mean MAI sum scores decreased by 0.3 points in IG and 0.8 points in CG, resulting in a non-significant adjusted mean difference of 0.7 (95% CI −0.2 to 1.6) points in favour of CG. Secondary outcomes showed non-significant changes (quality of life slightly improved in IG but continued to decline in CG) or remained stable (functioning, medication adherence).
Conclusions: The intervention had no significant effects. Many patients already received appropriate prescriptions and enjoyed good quality of life and functional status. We can therefore conclude that in our study, there was not enough scope for improvement.
Trial registration number: ISRCTN99526053. NCT01171339; Results.