Refine
Year of publication
Document Type
- Article (9)
- Contribution to a Periodical (4)
- Conference Proceeding (1)
- Report (1)
Has Fulltext
- yes (15)
Is part of the Bibliography
- no (15)
Institute
- Medizin (7)
- Präsidium (7)
- Biochemie und Chemie (5)
- Biowissenschaften (1)
- Fachübergreifend (1)
- Pharmazie (1)
Although the concept that dendritic cells (DCs) recognize pathogens through the engagement of Toll-like receptors is widely accepted, we recently suggested that immature DCs might sense kinin-releasing strains of Trypanosoma cruzi through the triggering of G-protein-coupled bradykinin B2 receptors (B2R). Here we report that C57BL/6.B2R-/- mice infected intraperitoneally with T. cruzi display higher parasitemia and mortality rates as compared to B2R+/+ mice. qRT-PCR revealed a 5-fold increase in T. cruzi DNA (14 d post-infection [p.i.]) in B2R-/- heart, while spleen parasitism was negligible in both mice strains. Analysis of recall responses (14 d p.i.) showed high and comparable frequencies of IFN-gamma-producing CD4+ and CD8+ T cells in the spleen of B2R-/- and wild-type mice. However, production of IFN-gamma by effector T cells isolated from B2R-/- heart was significantly reduced as compared with wild-type mice. As the infection continued, wild-type mice presented IFN-gamma-producing (CD4+CD44+ and CD8+CD44+) T cells both in the spleen and heart while B2R-/- mice showed negligible frequencies of such activated T cells. Furthermore, the collapse of type-1 immune responses in B2R-/- mice was linked to upregulated secretion of IL-17 and TNF-alpha by antigen-responsive CD4+ T cells. In vitro analysis of tissue culture trypomastigote interaction with splenic CD11c+ DCs indicated that DC maturation (IL-12, CD40, and CD86) is controlled by the kinin/B2R pathway. Further, systemic injection of trypomastigotes induced IL-12 production by CD11c+ DCs isolated from B2R+/+ spleen, but not by DCs from B2R-/- mice. Notably, adoptive transfer of B2R+/+ CD11c+ DCs (intravenously) into B2R-/- mice rendered them resistant to acute challenge, rescued development of type-1 immunity, and repressed TH17 responses. Collectively, our results demonstrate that activation of B2R, a DC sensor of endogenous maturation signals, is critically required for development of acquired resistance to T. cruzi infection. Author Summary: Antibodies and IFN-gamma-producing effector T cells are essential for the immune control of infection by Trypanosoma cruzi, the intracellular protozoa that causes human Chagas disease. Despite the potency of anti-parasite immunity, the parasites are not cleared from their intracellular niches. Instead, a low grade chronic infection prevails, provoking severe immunopathology in the myocardium. Although it is well established that innate sentinel cells sense T. cruzi through receptors for microbial structures, such as Toll-like receptors, it remained unclear whether endogenous inflammatory signals also contribute to the development of adaptive immunity. The present study was motivated by awareness that T. cruzi trypomastigotes (extracellular infective forms) are equipped with proteases that liberate the pro-inflammatory bradykinin peptide from an internal segment of kininogens. Here we demonstrate that splenic dendritic cells (DCs), the antigen-presenting cells that coordinate the adaptive branch of immunity in lymphoid tissues, are potently activated via G-protein-coupled bradykinin B2 receptors (B2R). Analysis of the outcome of infection in B2R-knockout mice revealed that the mutant mice developed a typical susceptible phenotype, owing to impaired development of IFN-gamma-producing effector T cells. Notably, the immune dysfunction of B2R-knockout mice was corrected upon cell transfer of wild-type DCs, thus linking development of protective T cells to DCs' sensing of endogenous danger signals (kinins) released by trypomastigotes.
Einleitung: Für angehende Ärztinnen und Ärzte sind gründliche biochemische Kenntnisse von großer Bedeutung für das Verständnis molekularer Mechanismen, physiologischer Abläufe und pathologischer Entwicklungen. Entsprechend nimmt die biochemische Lehre im vorklinischen Abschnitt des Medizinstudiums viel Zeit in Anspruch. Zugleich ist aber die Biochemie bei den Studienanfängern ein ungeliebtes Fach: Die Stofffülle, die Komplexität molekularer Prozesse, das geforderte hohe Abstraktionsniveau und die oft unzureichenden schulischen Vorkenntnisse führen bei vielen Erstsemestern zu tiefer Abneigung gegenüber der molekularen Medizin. Um diesem Problem zu begegnen, bieten wir den Medizinstudierenden der Johann Wolfgang Goethe-Universität als vorklinisches Wahlfach eine neuartige Lehrveranstaltung an, die multimedial-biografische Vorträge mit biochemischem Unterricht kombiniert.
Methodik: Das Institut für Biochemie am FB Medizin führt eine propädeutische Lehrveranstaltung durch, in der Biografien bekannter Persönlichkeiten ebenso wie die korrespondierenden Krankheiten vorgestellt werden. Konzipiert als Wahlpflichtfach bietet diese multimediale Lehrveranstaltung (Titel: "Leben und Leiden berühmter Persönlichkeiten. Eine Einführung in die molekulare Medizin") den 40 teilnehmenden Studierenden in zehn wöchentlichen Doppelsitzungen pro Studienjahr einen breitgefächerten Lernstoff mit drei Lernzielen:
1. Im ersten Teil (45 Min.) jeder Doppelsitzung werden Leben, Leiden und Werk berühmter Persöhnlichkeiten aus Literatur, Musik, Politik, Kunst, Sport und Wissenschaft vorgestellt, die an einer bekannten Krankheit litten bzw. leiden. Unterstützt wird dieser biografische Vortrag in der Regel durch multimediale Einspielungen kurzer Video-Clips oder Musikstücke.
2. Im zweiten Teil (75 Min.) werden die molekularmedizinischen Hintergründe dieser Erkrankungen in einem biochemischen Vortrag vermittelt.
3. Dieser Vortrag wird durch Kurzreferate (jeweils 5 min.) der Studierenden zu grundlegenden biochemischen Strukturen und Prozessen ergänzt.
Unter den regelmäßig angebotenen Doppel-Themen sind: der Rockmusiker Freddy Mercury (AIDS), der Schriftsteller Ernest Hemingway (Alkoholismus), der Rock ´n Roll-Sänger Elvis Presley (Diabetes), der Komponist Ludwig van Beethoven (Morbus Crohn), der Boxer Muhammad Ali (Morbus Parkinson), der Rockmusiker Frank Zappa (Krebs).
Ergebnisse: Die Vortragsreihe wurde seit 2005 zum vierten Mal durchgeführt. Die Evaluation durch die Teilnehmer mittels Fragebogen ergab durchweg eine gute bis sehr gute Gesamtbewertung. Der Lernerfolg für die biochemischen Grundlagen wurde hoch eingeschätzt. Die multimedial präsentierten Biografien wurden als sinnvolle Ergänzung zu den molekularmedizinischen Themen empfunden.
Schlussfolgerung: Das studentische Feed-back bestätigt die Vermutung, dass diese spezifische Kombination die Attraktivität und Akzeptanz von Biochemie und Molekularbiologie bei den Studienanfängern erheblich steigert.
Poster presentation: NO-sensitive guanylyl cyclases (sGCs) are cytosolic receptors for nitric oxide (NO) catalyzing the conversion of GTP to cGMP. sGCs are obligate heterodimers composed of one alpha and beta subunit each. The allosteric mechanism of sGC activation via NO is well understood, however, our knowledge about alternative mechanisms such as protein-protein interactions regulating activity, availability, translocation and expression of sGC is rather limited. In a search by the yeast two-hybrid system using the catalytic domain of the alpha1 subunit as the bait, we have identified two structurally related proteins AGAP1 [1] and MRIP2 as novel sGC interacting proteins. MRIP2 is a multi-domain protein of 75 kDa comprising a single PH and ArfGAP domain each and two ankyrin repeats. Co-immunoprecipitation experiments using COS1 cells overexpressing both proteins demonstrated the interaction of MRIP2 with both subunits of the sGC alpha1beta1. Confocal microscopical analysis showed a prominent plasma membrane staining of MRIP2. This membrane association is mediated through an N-terminal myristoylation site and through binding of its PH domain to phospholipids such as phosphatidylinositol-3,5-bisphosphate (PI(3,5)P2). We hypothesize that MRIP2 may represent an acceptor protein for sGC that mediates recruitment of cytosolic sGC to the plasma membrane or other subcellular compartments.
Poster presentation NO-sensitive guanylyl cyclases (soluble guanylyl cyclase, sGC) are among the key regulators of intracellular cGMP concentration. The mechanisms underlying NO-mediated activation of sGC are quite well understood, however, little is known about the fine-tuning of sGC activity through alternative mechanisms such as protein phosphorylation. Several reports have demonstrated the reversible phosphorylation of sGC on serine/threonine residues, and it has been speculated, though not experimentally proven, that sGC might also be phosphorylated on tyrosine residues. Using broad-spectrum phosphatase inhibitors we were able to demonstrate tyrosine phosphorylation at Tyr192 of the beta 1 subunit of human sGC in COS1 cells. This residue forms part of a sequence segment (YEDL) representing a preferential binding site for SH2 domains of Src-like kinases. Pull-down assays and co-immunoprecipitation experiments showed that Src can indeed bind via its SH2 domain to pTyr192 of beta 1 indicating that tyrosine phosphorylation of sGC may be followed by recruitment of Src-like kinases to the phosphorylated beta 1 subunit. In support of this hypothesis, immunofluorescence studies showed a colocalization of overexpressed sGC and Src at the plasma membrane of COS1 and Hela cells. Together, our results point to an unexpected crosstalk between tyrosine kinase pathway(s) and the NO/cGMP signalling cascade which may result in translocation of the predominantly cytosolic sGC to the cytosolic face of the plasma membrane.
Poster presentation: NO-sensitive guanylyl cyclases (GC) are the principal receptors for nitric oxide (NO) and convert GTP into the second messenger cGMP. We showed that GC is prone to tyrosine phosphorylation in COS1 cells overexpressing the human holoenzyme. Similar results were obtained in PC12 cells and in rat aortic tissue slices. The major phosphorylation site was mapped to position 192 in the regulatory domain of the beta1 subunit. Tyrosine phosphorylation of GC was reduced in the presence of the inhibitors PP1 and PP2 indicating that Src-like kinases are critically involved in phosphorylation. Moreover, co-immunoprecipitation experiments revealed an interaction between Src and GC. To further analyse the relevance of this posttranslational modification we generated a phospho-specific antibody raised against pTyr192. This antibody clearly distinguishes between phosphorylated and non-phosphorylated GC and may be a powerful tool to analyse the subcellular localisation of the phosphorylated enzyme.
Oxidative stress attenuates the NO-cGMP pathway, e.g. in the vascular system, through scavenging of free NO radicals by superoxide O2•-, by inactivation of soluble guanylyl cyclase (sGC) via oxidation of its central Fe2+ ion, and by down-regulation of sGC protein levels. While the former pathways are well established, the molecular mechanisms underlying the latter are still obscure. Using oxidative sGC inhibitor ODQ we demonstrate rapid down-regulation of sGC protein in mammalian cells. Co-incubation with proteasomal inhibitor MG132 results in accumulation of ubiquitinated sGC whereas sGC activator BAY 58–2667 prevents ubiquitination. ODQ-induced down-regulation of sGC is mediated through selective ubiquitination of its b subunit, and BAY 58–2667 abrogates this effect. Ubiquitination of sGC-b is dramatically enhanced by E3 ligase CHIP. Our data indicate that oxidative stress promotes ubiquitination of sGC b subunit through E3 ligase CHIP, and that sGC activator 58–2667 reverts this effect, most likely through stabilization of the heme-free b subunit. Thus the deleterious effects of oxidative stress can be counter-balanced by an activator of a key enzyme of vascular homeostasis.
Background: Nitric oxide (NO) is an essential vasodilator. In vascular diseases, oxidative stress attenuates NO signaling by both chemical scavenging of free NO and oxidation and down-regulation of its major intracellular receptor, the alpha/beta heterodimeric heme-containing soluble guanylate cyclase (sGC). Oxidation can also induce loss of sGC's heme and responsiveness to NO.
Results: sGC activators such as BAY 58-2667 bind to oxidized/heme-free sGC and reactivate the enzyme to exert disease-specific vasodilation. Here we show that oxidation-induced down-regulation of sGC protein extends to isolated blood vessels. Mechanistically, degradation was triggered through sGC ubiquitination and proteasomal degradation. The heme-binding site ligand, BAY 58-2667, prevented sGC ubiquitination and stabilized both alpha and beta subunits.
Conclusion: Collectively, our data establish oxidation-ubiquitination of sGC as a modulator of NO/cGMP signaling and point to a new mechanism of action for sGC activating vasodilators by stabilizing their receptor, oxidized/heme-free sGC.
Bei den vorliegenden Zielvereinbarungen zwischen dem HMWK und den zwölf hessischen Hochschulen handelt es sich um Leistungsvereinbarungen, die auf dem Hochschulpakt für die Jahre 2011 bis 2015 (vom 18. Mai 2010) aufbauen. Wurden im Hochschulpakt vornehmlich strategische Regelungen hinsichtlich der Finanzierung der Hochschulen und der hochschulpolitischen Ziele getroffen, werden nunmehr mit den inzwischen zum dritten Male abgeschlossenen Zielvereinbarungen vor allem strategische Schwerpunkte in der Hochschulentwicklung gesetzt. ...
Treatment of malignant glioma with chemotherapy is limited mostly because of delivery impediment related to the blood-brain tumor barrier (BTB). B1 receptors (B1R), inducible prototypical G-protein coupled receptors (GPCR) can regulate permeability of vessels including possibly that of brain tumors. Here, we determine the extent of BTB permeability induced by the natural and synthetic peptide B1R agonists, LysdesArg9BK (LDBK) and SarLys[DPhe8]desArg9BK (NG29), in syngeneic F98 glioma-implanted Fischer rats. Ten days after tumor inoculation, we detected the presence of B1R on tumor cells and associated vasculature. NG29 infusion increased brain distribution volume and uptake profiles of paramagnetic probes (Magnevist and Gadomer) at tumoral sites (T1-weighted imaging). These effects were blocked by B1R antagonist and non-selective cyclooxygenase inhibitors, but not by B2R antagonist and non-selective nitric oxide synthase inhibitors. Consistent with MRI data, systemic co-administration of NG29 improved brain tumor delivery of Carboplatin chemotherapy (ICP-Mass spectrometry). We also detected elevated B1R expression in clinical samples of high-grade glioma. Our results documented a novel GPCR-signaling mechanism for promoting transient BTB disruption, involving activation of B1R and ensuing production of COX metabolites. They also underlined the potential value of synthetic biostable B1R agonists as selective BTB modulators for local delivery of different sized-therapeutics at (peri)tumoral sites.