Refine
Document Type
- Article (4)
- Doctoral Thesis (1)
Has Fulltext
- yes (5)
Is part of the Bibliography
- no (5)
Keywords
- CRM1 (1)
- MEIS2 (1)
- NADPH Oxidasen (1)
- NADPH oxidase (1)
- Nox (1)
- Nox inhibition (1)
- Nox4 (1)
- PBX1 (1)
- Rab27a (1)
- Schmerz (1)
Institute
Accumulating evidence indicates that increased generation of reactive oxygen species (ROS) contributes to the development of exaggerated pain hypersensitivity during persistent pain. In the present study, we investigated the antinociceptive efficacy of the antioxidants vitamin C and vitamin E in mouse models of inflammatory and neuropathic pain. We show that systemic administration of a combination of vitamins C and E inhibited the early behavioral responses to formalin injection and the neuropathic pain behavior after peripheral nerve injury, but not the inflammatory pain behavior induced by Complete Freund's Adjuvant. In contrast, vitamin C or vitamin E given alone failed to affect the nociceptive behavior in all tested models. The attenuated neuropathic pain behavior induced by the vitamin C and E combination was paralleled by a reduced p38 phosphorylation in the spinal cord and in dorsal root ganglia, and was also observed after intrathecal injection of the vitamins. Moreover, the vitamin C and E combination ameliorated the allodynia induced by an intrathecally delivered ROS donor. Our results suggest that administration of vitamins C and E in combination may exert synergistic antinociceptive effects, and further indicate that ROS essentially contribute to nociceptive processing in special pain states.
Tissue injury and inflammation may result in chronic pain, a severe debilitating disease that is associated with great impairment of quality of life. An increasing body of evidence indicates that members of the Rab family of small GTPases contribute to pain processing; however, their specific functions remain poorly understood. Here, we found using immunofluorescence staining and in situ hybridization that the small GTPase Rab27a is highly expressed in sensory neurons and in the superficial dorsal horn of the spinal cord of mice. Rab27a mutant mice, which carry a single-nucleotide missense mutation of Rab27a leading to the expression of a nonfunctional protein, show reduced mechanical hyperalgesia and spontaneous pain behavior in inflammatory pain models, while their responses to acute noxious mechanical and thermal stimuli is not affected. Our study uncovers a previously unrecognized function of Rab27a in the processing of persistent inflammatory pain in mice.
Adult neurogenesis is regulated by stem cell niche-derived extrinsic factors and cell-intrinsic regulators, yet the mechanisms by which niche signals impinge on the activity of intrinsic neurogenic transcription factors remain poorly defined. Here, we report that MEIS2, an essential regulator of adult SVZ neurogenesis, is subject to posttranslational regulation in the SVZ olfactory bulb neurogenic system. Nuclear accumulation of MEIS2 in adult SVZ-derived progenitor cells follows downregulation of EGFR signaling and is modulated by methylation of MEIS2 on a conserved arginine, which lies in close proximity to nested binding sites for the nuclear export receptor CRM1 and the MEIS dimerization partner PBX1. Methylation impairs interaction with CRM1 without affecting PBX1 dimerization and thereby allows MEIS2 nuclear accumulation, a prerequisite for neuronal differentiation. Our results describe a form of posttranscriptional modulation of adult SVZ neurogenesis whereby an extrinsic signal fine-tunes neurogenesis through posttranslational modification of a transcriptional regulator of cell fate.
Bei Entzündung oder Verletzung peripherer Gewebe und Nerven kommt es zur Bildung reaktiver Sauerstoffspezies (ROS) im schmerzleitenden System. Welche ROS-generierenden Systeme hierbei beteiligt sind, ist jedoch nur ansatzweise verstanden. In der vorliegenden Arbeit konnte gezeigt werden, dass die ROS-produzierende NADPH Oxidase 4 (Nox4) einen wichtigen ROS-Generator im nozizeptiven System darstellt. Nox4 wird in unmyelinisierten nicht-peptidergen sowie in myelinisierten primär afferenten Neuronen exprimiert. In Modellen für akute und inflammatorische Schmerzen zeigten Nox4-/--Mäuse ein ähnliches Verhalten wie ihre wildtypischen Wurfgeschwister, jedoch war ihr Schmerzverhalten in Modellen für neuropathische Schmerzen reduziert. Eine Microarray-Analyse des lumbalen Rückenmarks nach peripherer Nervenverletzung zeigte eine Hochregulation der Expression Myelin-spezifischer Gene in Wildtyp-, nicht aber in Nox4-/- Mäusen. Darüber hinaus wurden in Wildtyp-Mäusen Myelin-spezifische Proteine im N. ischiadicus nach peripherer Nervenverletzung herab reguliert, während in Nox4-/--Mäusen keine Regulation dieser Proteine beobachtet wurde. Diese Ergebnisse deuten darauf hin, dass Nox4 eine essentielle Rolle bei Myelinisierungsprozessen spielt und so die Verarbeitung neuropathischer Schmerzsignale beeinflusst.
Neben dem ROS-produzierenden System Nox4 wurde auch die Rolle des Peroxid-abbauenden Proteins Sestrin 2 (Sesn2) im nozizeptiven System untersucht. Nach peripherer Nervenverletzung wurde Sesn2-mRNA in den Spinalganglien und Sesn2-Protein im peripheren Nerv hochreguliert. Sesn2-/--Mäuse zeigten ein normales Verhalten in Modellen für akute und inflammatorische Schmerzen. Ihr Schmerzverhalten war jedoch im Formalin-Test und nach peripherer Nervenverletzung verstärkt.
Diese Ergebnisse lassen vermuten, dass sowohl Nox4 als auch Sesn2 bei der Verarbeitung neuropathischer Schmerzsignale wichtige Funktionen einnehmen. Während Nox4 pronozizeptiv wirkt, weist Sesn2 antinozizeptive Effekte auf. Die Produktion reaktiver Sauerstoffspezies scheint daher ein wichtiger endogener Faktor der Sensibilisierung im Rahmen von neuropathischen Schmerzen zu sein.
Inflammation or injury to the somatosensory nervous system may result in chronic pain conditions, which affect millions of people and often cause major health problems. Emerging lines of evidence indicate that reactive oxygen species (ROS), such as superoxide anion or hydrogen peroxide, are produced in the nociceptive system during chronic inflammatory and neuropathic pain and act as specific signaling molecules in pain processing. Among potential ROS sources in the somatosensory system are NADPH oxidases, a group of electron-transporting transmembrane enzymes whose sole function seems to be the generation of ROS. Interestingly, the expression and relevant function of the Nox family members Nox1, Nox2, and Nox4 in various cells of the nociceptive system have been demonstrated. Studies using knockout mice or specific knockdown of these isoforms indicate that Nox1, Nox2, and Nox4 specifically contribute to distinct signaling pathways in chronic inflammatory and/or neuropathic pain states. As selective Nox inhibitors are currently being developed and investigated in various physiological and pathophysiological settings, targeting Nox1, Nox2, and/or Nox4 could be a novel strategy for the treatment of chronic pain. Here, we summarize the distinct roles of Nox1, Nox2, and Nox4 in inflammatory and neuropathic processing and discuss the effectiveness of currently available Nox inhibitors in the treatment of chronic pain conditions.