Refine
Year of publication
- 2021 (3)
Document Type
- Article (2)
- Doctoral Thesis (1)
Language
- English (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Keywords
- Acinetobacter baumannii (1)
- Antimicrobial resistance (1)
- Bacterial structural biology (1)
- Enzyme mechanisms (1)
- TetR family (1)
- X-ray crystallography (1)
- antibiotic resistance (1)
- tetracycline (1)
- tetracycline transporter (1)
- tigecycline (1)
Institute
Acinetobacter baumannii is an important nosocomial pathogen that requires thoughtful consideration in the antibiotic prescription strategy due to its multidrug resistant phenotype. Tetracycline antibiotics have recently been re-administered as part of the combination antimicrobial regimens to treat infections caused by A. baumannii. We show that the TetA(G) efflux pump of A. baumannii AYE confers resistance to a variety of tetracyclines including the clinically important antibiotics doxycycline and minocycline, but not to tigecycline. Expression of tetA(G) gene is regulated by the TetR repressor of A. baumannii AYE (AbTetR). Thermal shift binding experiments revealed that AbTetR preferentially binds tetracyclines which carry a O-5H moiety in ring B, whereas tetracyclines with a 7-dimethylamino moiety in ring D are less well-recognized by AbTetR. Confoundingly, tigecycline binds to AbTetR even though it is not transported by TetA(G) efflux pump. Structural analysis of the minocycline-bound AbTetR-Gln116Ala variant suggested that the non-conserved Arg135 interacts with the ring D of minocycline by cation-π interaction, while the invariant Arg104 engages in H-bonding with the O-11H of minocycline. Interestingly, the Arg135Ala variant exhibited a binding preference for tetracyclines with an unmodified ring D. In contrast, the Arg104Ala variant preferred to bind tetracyclines which carry a O-6H moiety in ring C except for tigecycline. We propose that Arg104 and Arg135, which are embedded at the entrance of the AbTetR binding pocket, play important roles in the recognition of tetracyclines, and act as a barrier to prevent the release of tetracycline from its binding pocket upon AbTetR activation. The binding data and crystal structures obtained in this study might provide further insight for the development of new tetracycline antibiotics to evade the specific efflux resistance mechanism deployed by A. baumannii.
Acinetobacter baumannii is a worldwide opportunistic pathogen responsible for nosocomial infections. One of the main factors contributing to multidrug resistance in A. baumannii is the upregulation of various chromosomally encoded or acquired efflux pumps, which expel toxic compounds out of the cells with high efficiency.
The resistance-nodulation-cell division (RND)-type efflux pump gene deletion strains ∆adeAB, ∆adeFG or ∆adeIJ and the major facilitator superfamily (MFS) chloramphenicol efflux pump gene deletion strain ∆craA of A. baumannii ATCC 19606 were created and a differential gene expression study was conducted via RT-qPCR. The expression of efflux pump genes adeB, adeG, adeJ, craA, and the outer membrane protein ompA were examined in the absence and presence of chloramphenicol. No significant up- or downregulation of these genes for any of these deletion strains in comparision to the wild-type strain in absence of the drug chloramphenicol.
In contrast, craA was significantly up-regulated in A. baumannii exposed to chloramphenicol, emphasizing the importance of CraA in chloramphenicol resistance. CraA is widely present in clinical isolates of A. baumannii. It is homologous to the well-studied multiple-drug efflux transporter MdfA from Escherichia coli (61% similarity), but surprisingly reported to be acting as a specific chloramphenicol transporter of A. baumannii (Roca et al., 2009).
The drug susceptibility assay done with A. baumannii ATCC 19606 ΔcraA showed that CraA could confer resistance towards phenicols (chloramphenicol, thiamphenicol, and florfenicol), which was in line with the previous report. CraA was heterologously overproduced in E. coli BW25113 ∆emrE∆mdfA and its substrate specificity was determined by drug susceptibility assays and whole cell fluorescent dye uptake experiments. We observed that the substrate specificity of craA overexpressed in E. coli was more diverse and resembling that of the E. coli MdfA homolog. Apart from resistance towards phenicols (chloramphenicol, thiamphenicol, and florfenicol), CraA also confer resistance towards monovalent cationic drugs (benzalkonium, TPP+, and ethidium), long dicationic drugs (dequalinium and chlorhexidine), fluoroquinolones (norfloxacin and ciprofoxacin) and anticancer drugs (mitomycin C). We showed that CraA is a drug/H+ antiporter by ACMA quenching in inverted CraA or CraA variant containing membrane vesicles.
To address the molecular determinants for multidrug binding and transport, 45 mostly single Ala-substitution variants of CraA were created. These include substitution variants for membrane-embedded proton-titratable residues (E38, D46, and E338) and residues predicted to be important for binding and transport of drug, as inferred from docking experiments on basis of a MdfA-derived CraA model. The combined results indicated a high degree of functional similarities between MdfA and CraA. The conserved titratable residues E26 and D34 (E38 and D46 in CraA) are important for transport in both these homologs. The CraA variant E38A is inactive against all tested drugs, but D46A is only inactive for some drugs, suggesting that only E38 is involved in H+-transport.
Another focus of this thesis is the three tetracycline transporters of A. baumannii strain AYE, TetA, TetG and TetA(A). Susceptibility assays involving tetracycline, minocycline, doxycycline and the last-resort antibiotic tigecycline were conducted on E. coli BW25113 ∆emrE∆mdfA overexpressing these transporters. TetA(A) was excluded from further study due to toxicity of the cells caused by protein overexpression. Both TetA and TetG confer resistance against tetracycline, minocycline and doxycycline. Although tigecycline was reported not to be recognized by tetracycline efflux pumps, we surprisingly found that TetA is able to transport tigecycline. The role of TetA in tigecycline efflux in A. baumannii was confirmed by conducting tigecycline susceptibility assays on A. baumannii.
We speculate that TetA embedded in the inner membrane acts in cooperation with RND-type tripartite systems that span the inner and outer membrane to extrude tigecycline from the periplasm across the outer membrane. A. baumannii ATCC 19606 ∆adeAB were indeed sensitive to tigecycline in comparison to wild-type strain. Deletion of adeIJ also leads to sensitivity to tigecycline, but less so compared to the DadeAB phenotype, while A. baumannii ATCC 19606 ∆adeFG did not show any difference compared to wild-type strain in tigecycline susceptibility. Differential gene expression analysis of the RND efflux pumps (adeB, adeG and adeJ) and tetA of A. baumannii strain AYE showed that the expression of tetA expression is significantly upregulated when tigecycline is present in the growth medium.
We conclude that craA encodes a broad-spectrum efflux pump rather than a specific chloramphenicol transporter. In A. baumannii, the synergistic effects with the outer membrane and/or the presence of other transporters could result in the discrepancy observed. Thus, the possibility of CraA in conferring multidrug resistance should not be overlooked, especially when it is up-regulated under antibiotic stress conditions.
Gram-negative bacteria maintain an intrinsic resistance mechanism against entry of noxious compounds by utilizing highly efficient efflux pumps. The E. coli AcrAB-TolC drug efflux pump contains the inner membrane H+/drug antiporter AcrB comprising three functionally interdependent protomers, cycling consecutively through the loose (L), tight (T) and open (O) state during cooperative catalysis. Here, we present 13 X-ray structures of AcrB in intermediate states of the transport cycle. Structure-based mutational analysis combined with drug susceptibility assays indicate that drugs are guided through dedicated transport channels toward the drug binding pockets. A co-structure obtained in the combined presence of erythromycin, linezolid, oxacillin and fusidic acid shows binding of fusidic acid deeply inside the T protomer transmembrane domain. Thiol cross-link substrate protection assays indicate that this transmembrane domain-binding site can also accommodate oxacillin or novobiocin but not erythromycin or linezolid. AcrB-mediated drug transport is suggested to be allosterically modulated in presence of multiple drugs.