Refine
Year of publication
Language
- English (181)
Has Fulltext
- yes (181)
Is part of the Bibliography
- no (181)
Keywords
- LHC (9)
- Heavy-ion collisions (5)
- ALICE experiment (4)
- ALICE (3)
- Diffraction (3)
- pp collisions (3)
- Beam Energy Scan (2)
- Beauty production (2)
- Chiral Magnetic Effect (2)
- Collectivity (2)
Institute
- Frankfurt Institute for Advanced Studies (FIAS) (156)
- Physik (83)
- Informatik (59)
- Medizin (1)
Understanding gluon density distributions and how they are modified in nuclei are among the most important goals in nuclear physics. In recent years, diffractive vector meson production measured in ultra-peripheral collisions (UPCs) at heavy-ion colliders has provided a new tool for probing the gluon density. In this Letter, we report the first measurement of J/ψ photoproduction off the deuteron in UPCs at the center-of-mass energy sNN−−−√=200 GeV in d+Au collisions. The differential cross section as a function of momentum transfer −t is measured. In addition, data with a neutron tagged in the deuteron-going Zero-Degree Calorimeter is investigated for the first time, which is found to be consistent with the expectation of incoherent diffractive scattering at low momentum transfer. Theoretical predictions based on the Color Glass Condensate saturation model and the gluon shadowing model are compared with the data quantitatively. A better agreement with the saturation model has been observed. With the current measurement, the results are found to be directly sensitive to the gluon density distribution of the deuteron and the deuteron breakup, which provides insights into the nuclear gluonic structure.
Understanding gluon density distributions and how they are modified in nuclei are among the most important goals in nuclear physics. In recent years, diffractive vector meson production measured in ultra-peripheral collisions (UPCs) at heavy-ion colliders has provided a new tool for probing the gluon density. In this Letter, we report the first measurement of J/ψ photoproduction off the deuteron in UPCs at the center-of-mass energy sNN−−−√=200 GeV in d+Au collisions. The differential cross section as a function of momentum transfer −t is measured. In addition, data with a neutron tagged in the deuteron-going Zero-Degree Calorimeter is investigated for the first time, which is found to be consistent with the expectation of incoherent diffractive scattering at low momentum transfer. Theoretical predictions based on the Color Glass Condensate saturation model and the gluon shadowing model are compared with the data quantitatively. A better agreement with the saturation model has been observed. With the current measurement, the results are found to be directly sensitive to the gluon density distribution of the deuteron and the deuteron breakup, which provides insights into the nuclear gluonic structure.
Partons traversing the strongly interacting medium produced in heavy-ion collisions are expected to lose energy depending on their color charge and mass. We measure the nuclear modification factors for charm- and bottom-decay electrons, defined as the ratio of yields, scaled by the number of binary nucleon-nucleon collisions, in sNN−−−√ = 200 GeV Au+Au collisions to p+p collisions (RAA), or in central to peripheral Au+Au collisions (RCP). We find the bottom-decay electron RAA and RCP to be significantly higher than that of charm-decay electrons. Model calculations including mass-dependent parton energy loss in a strongly coupled medium are consistent with the measured data. These observations provide clear evidence of mass ordering of charm and bottom quark energy loss when traversing through the strongly coupled medium created in heavy-ion collisions.
Partons traversing the strongly interacting medium produced in heavy-ion collisions are expected to lose energy depending on their color charge and mass. We measure the nuclear modification factors for charm- and bottom-decay electrons, defined as the ratio of yields, scaled by the number of binary nucleon-nucleon collisions, in sNN−−−√ = 200 GeV Au+Au collisions to p+p collisions (RAA), or in central to peripheral Au+Au collisions (RCP). We find the bottom-decay electron RAA and RCP to be significantly higher than that of charm-decay electrons. Model calculations including mass-dependent parton energy loss in a strongly coupled medium are consistent with the measured data. These observations provide clear evidence of mass ordering of charm and bottom quark energy loss when traversing through the strongly coupled medium created in heavy-ion collisions.
Partons traversing the strongly interacting medium produced in heavy-ion collisions are expected to lose energy depending on their color charge and mass. We measure the nuclear modification factors for charm- and bottom-decay electrons, defined as the ratio of yields, scaled by the number of binary nucleon-nucleon collisions, in sNN−−−√ = 200 GeV Au+Au collisions to p+p collisions (RAA), or in central to peripheral Au+Au collisions (RCP). We find the bottom-decay electron RAA and RCP to be significantly higher than that of charm-decay electrons. Model calculations including mass-dependent parton energy loss in a strongly coupled medium are consistent with the measured data. These observations provide clear evidence of mass ordering of charm and bottom quark energy loss when traversing through the strongly coupled medium created in heavy-ion collisions.
Partons traversing the strongly interacting medium produced in heavy-ion collisions are expected to lose energy depending on their color charge and mass. We measure the nuclear modification factors for charm- and bottom-decay electrons, defined as the ratio of yields, scaled by the number of binary nucleon-nucleon collisions, in sNN−−−√ = 200 GeV Au+Au collisions to p+p collisions (RAA), or in central to peripheral Au+Au collisions (RCP). We find the bottom-decay electron RAA and RCP to be significantly higher than that of charm-decay electrons. Model calculations including mass-dependent parton energy loss in a strongly coupled medium are consistent with the measured data. These observations provide clear evidence of mass ordering of charm and bottom quark energy loss when traversing through the strongly coupled medium created in heavy-ion collisions.
We report precision measurements of hypernuclei 3ΛH and 4ΛH lifetimes obtained from Au+Au collisions at \snn = 3.0\,GeV and 7.2\,GeV collected by the STAR experiment at RHIC, and the first measurement of 3ΛH and 4ΛH mid-rapidity yields in Au+Au collisions at \snn = 3.0\,GeV. The lifetimes are measured to be 221±15(stat.)±19(syst.)\,ps for 3ΛH and 218±6(stat.)±13(syst.)\,ps for 4ΛH. The pT-integrated yields of 3ΛH and 4ΛH are presented in different centrality and rapidity intervals. It is observed that the shape of the rapidity distribution of 4ΛH is different for 0--10\% and 10--50\% centrality collisions. Thermal model calculations, using the canonical ensemble for strangeness, describes the 3ΛH yield well, while underestimating the 4ΛH yield. Transport models, combining baryonic mean-field and coalescence (JAM) or utilizing dynamical cluster formation via baryonic interactions (PHQMD) for light nuclei and hypernuclei production, approximately describe the measured 3ΛH and 4ΛH yields.
We report precision measurements of hypernuclei 3ΛH and 4ΛH lifetimes obtained from Au+Au collisions at \snn = 3.0\,GeV and 7.2\,GeV collected by the STAR experiment at RHIC, and the first measurement of 3ΛH and 4ΛH mid-rapidity yields in Au+Au collisions at \snn = 3.0\,GeV. 3ΛH and 4ΛH, being the two simplest bound states composed of hyperons and nucleons, are cornerstones in the field of hypernuclear physics. Their lifetimes are measured to be 221±15(stat.)±19(syst.)\,ps for 3ΛH and 218±6(stat.)±13(syst.)\,ps for 4ΛH. The pT-integrated yields of 3ΛH and 4ΛH are presented in different centrality and rapidity intervals. It is observed that the shape of the rapidity distribution of 4ΛH is different for 0--10\% and 10--50\% centrality collisions. Thermal model calculations, using the canonical ensemble for strangeness, describes the 3ΛH yield well, while underestimating the 4ΛH yield. Transport models, combining baryonic mean-field and coalescence (JAM) or utilizing dynamical cluster formation via baryonic interactions (PHQMD) for light nuclei and hypernuclei production, approximately describe the measured 3ΛH and 4ΛH yields. Our measurements provide means to precisely assess our understanding of the fundamental baryonic interactions with strange quarks, which can impact our understanding of more complicated systems involving hyperons, such as the interior of neutron stars or exotic hypernuclei.
We report precision measurements of hypernuclei 3ΛH and 4ΛH lifetimes obtained from Au+Au collisions at \snn = 3.0\,GeV and 7.2\,GeV collected by the STAR experiment at RHIC, and the first measurement of 3ΛH and 4ΛH mid-rapidity yields in Au+Au collisions at \snn = 3.0\,GeV. 3ΛH and 4ΛH, being the two simplest bound states composed of hyperons and nucleons, are cornerstones in the field of hypernuclear physics. Their lifetimes are measured to be 221±15(stat.)±19(syst.)\,ps for 3ΛH and 218±6(stat.)±13(syst.)\,ps for 4ΛH. The pT-integrated yields of 3ΛH and 4ΛH are presented in different centrality and rapidity intervals. It is observed that the shape of the rapidity distribution of 4ΛH is different for 0--10\% and 10--50\% centrality collisions. Thermal model calculations, using the canonical ensemble for strangeness, describes the 3ΛH yield well, while underestimating the 4ΛH yield. Transport models, combining baryonic mean-field and coalescence (JAM) or utilizing dynamical cluster formation via baryonic interactions (PHQMD) for light nuclei and hypernuclei production, approximately describe the measured 3ΛH and 4ΛH yields. Our measurements provide means to precisely assess our understanding of the fundamental baryonic interactions with strange quarks, which can impact our understanding of more complicated systems involving hyperons, such as the interior of neutron stars or exotic hypernuclei.