Refine
Year of publication
Language
- English (710)
Has Fulltext
- yes (710)
Is part of the Bibliography
- no (710)
Keywords
- BESIII (20)
- e +-e − Experiments (17)
- Branching fraction (12)
- LHC (10)
- Particle and Resonance Production (8)
- Quarkonium (7)
- Charm Physics (6)
- Heavy-ion collisions (6)
- Spectroscopy (6)
- Hadronic decays (5)
Institute
- Physik (600)
- Frankfurt Institute for Advanced Studies (FIAS) (186)
- Informatik (79)
- Medizin (1)
An amplitude analysis of the 𝐾𝑆𝐾𝑆 system produced in radiative 𝐽/𝜓 decays is performed using the (1310.6±7.0)×106 𝐽/𝜓 decays collected by the BESIII detector. Two approaches are presented. A mass-dependent analysis is performed by parametrizing the 𝐾𝑆𝐾𝑆 invariant mass spectrum as a sum of Breit-Wigner line shapes. Additionally, a mass-independent analysis is performed to extract a piecewise function that describes the dynamics of the 𝐾𝑆𝐾𝑆 system while making minimal assumptions about the properties and number of poles in the amplitude. The dominant amplitudes in the mass-dependent analysis include the 𝑓0(1710), 𝑓0(2200), and 𝑓′2(1525). The mass-independent results, which are made available as input for further studies, are consistent with those of the mass-dependent analysis and are useful for a systematic study of hadronic interactions. The branching fraction of radiative 𝐽/𝜓 decays to 𝐾𝑆𝐾𝑆 is measured to be (8.1±0.4)×10−4, where the uncertainty is systematic and the statistical uncertainty is negligible.
Based on an 𝑒+𝑒− collision data sample corresponding to an integrated luminosity of 567 pb−1 taken at the center-of-mass energy of √𝑠=4.6 GeV with the BESIII detector, we measure the absolute branching fraction of the inclusive decay Λ+𝑐→Λ+𝑋 to be ℬ(Λ+𝑐→Λ+𝑋)=(38.2+2.8−2.2±0.9)% using the double-tag method, where 𝑋 refers to any possible final state particles. In addition, we search for direct 𝐶𝑃 violation in the charge asymmetry of this inclusive decay for the first time, and obtain 𝒜𝐶𝑃≡[ℬ(Λ+𝑐→Λ+𝑋)−ℬ(¯Λ−𝑐 → ¯Λ+𝑋)]/[ℬ(Λ+𝑐→Λ+𝑋)+ℬ(¯Λ−𝑐 → ¯Λ+𝑋)]=(2.1+7.0−6.6±1.6)%, a statistically limited result with no evidence of 𝐶𝑃 violation.
Using a data sample of 𝑒+𝑒− collisions corresponding to an integrated luminosity of 567 pb−1 collected at a center-of-mass energy of √𝑠=4.6 GeV with the BESIII detector, we measure the absolute branching fraction of the inclusive semileptonic Λ+𝑐 decay with a double-tag method. We obtain ℬ(Λ+𝑐→𝑋𝑒+𝜈𝑒)=(3.95±0.34±0.09)%, where the first uncertainty is statistical and the second systematic. Using the known Λ+𝑐 lifetime and the charge-averaged semileptonic decay width of nonstrange charmed mesons (𝐷0 and 𝐷+), we obtain the ratio of the inclusive semileptonic decay widths Γ(Λ+𝑐→𝑋𝑒+𝜈𝑒)/¯Γ(𝐷→𝑋𝑒+𝜈𝑒)=1.26±0.12.
Using a sample of 4.48×108 ψ(3686) events collected with the BESIII detector at the BEPCII collider, we study the two-photon decays of the pseudoscalar mesons π0, η, η′, η(1405), η(1475), η(1760), and X(1835) in J/ψ radiative decays using ψ(3686)→π+π−J/ψ events. The π0, η and η′ mesons are clearly observed in the two-photon mass spectra, and the branching fractions are determined to be B(J/ψ→γπ0→3γ)=(3.57±0.12±0.16)×10−5, B(J/ψ→γη→3γ)=(4.42±0.04±0.18)×10−4, and B(J/ψ→γη′→3γ)=(1.26±0.02±0.05)×10−4, where the first errors are statistical and the second systematic. No clear signal for η(1405), η(1475), η(1760) or X(1835) is observed in the two-photon mass spectra, and upper limits at the 90% confidence level on the product branching fractions are obtained.
Using a data sample of 448.1×106 𝜓(3686) events collected with the BESIII detector operating at the BEPCII, we perform search for the hadronic transition ℎ𝑐→𝜋+𝜋−𝐽/𝜓 via 𝜓(3686)→𝜋0ℎ𝑐. No signals of the transition are observed, and the upper limit on the product branching fraction ℬ(𝜓(3686)→𝜋0ℎ𝑐)ℬ(ℎ𝑐→𝜋+𝜋−𝐽/𝜓) at the 90% confidence level (C.L.) is determined to be 2.0×10−6. This is the most stringent upper limit to date.
Using 16 energy points of e+e− annihilation data collected in the vicinity of the J/ψ resonance with the BESIII detector and with a total integrated luminosity of around 100 pb−1, we study the relative phase between the strong and electromagnetic amplitudes of J/ψ decays. The relative phase between J/ψ electromagnetic decay and the continuum process (e+e− annihilation without the J/ψ resonance) is confirmed to be zero by studying the cross section lineshape of μ+μ− production. The relative phase between J/ψ strong and electromagnetic decays is then measured to be (84.9 ± 3.6)◦ or (−84.7 ± 3.1)◦ for the 2(π+π−)π0 final state by investigating the interference pattern between the J/ψ decay and the continuum process. This is the first measurement of the relative phase between J/ψ strong and electromagnetic decays into a multihadron final state using the lineshape of the production cross section. We also study the production lineshape of the multihadron final state ηπ+π− with η → π+π−π0, which provides additional information about the phase between the J/ψ electromagnetic decay amplitude and the continuum process. Additionally, the branching fraction of J/ψ → 2(π+π−)π0 is measured to be (4.73 ± 0.44)% or (4.85 ± 0.45)%, and the branching fraction of J/ψ → ηπ+π− is measured to be (3.78 ± 0.68) × 10−4. Both of them are consistent with the world average values. The quoted uncertainties include both statistical and systematic uncertainties, which are mainly caused by the low statistics.
Using a data sample of e+e− collision data corresponding to an integrated luminosity of 2.93 fb−1 collected with the BESIII detector at a center-of-mass energy of s=3.773GeV, we search for the singly Cabibbo-suppressed decays D0→π0π0π0, π0π0η, π0ηη and ηηη using the double tag method. The absolute branching fractions are measured to be B(D0→π0π0π0)=(2.0±0.4±0.3)×10−4, B(D0→π0π0η)=(3.8±1.1±0.7)×10−4 and B(D0→π0ηη)=(7.3±1.6±1.5)×10−4 with the statistical significances of 4.8σ, 3.8σ and 5.5σ, respectively, where the first uncertainties are statistical and the second ones systematic. No significant signal of D0→ηηη is found, and the upper limit on its decay branching fraction is set to be B(D0→ηηη)<1.3×10−4 at the 90% confidence level.
In the effective field theory, the massless dark photon γ′ can only couple with the Standard Model particle through operators of dimension higher than four, thereby offering a high sensitivity to the new physics energy scale. Using 7.9 fb−1 of e+e− collision data collected at s√=3.773 GeV with the BESIII detector at the BEPCII collider, we measure the effective flavor-changing neutral current coupling of cuγ′ in D0→ωγ′ and D0→γγ′ processes to search for the massless dark photon. No significant signals are observed, and the upper limits at the 90% confidence level on the massless dark photon branching fraction are set to be 1.1×10−5 and 2.0×10−6 for D0→ωγ′ and D0→γγ′, respectively. These results provide the most stringent constraint on the new physics energy scale associated with cuγ′ coupling in the world, with the new physics energy scale related parameter |C|2+|C5|2<8.2×10−17 GeV−2 at the 90% confidence level, playing a unique role in the dark sector search with the charm sector.
We perform the first investigation of the process e+e−→K+K−ψ(2S) and report its Born cross sections over a range of center-of-mass energies from 4.699 to 4.951~GeV. The measurements are carried out using several partial reconstruction techniques using data samples collected by the BESIII detector with a total integrated luminosity of 2.5~fb−1. We search for new tetraquark candidates Z±cs in the decays Z±cs→K±ψ(2S). No significant Z±cs signals are observed.
The branching fraction of D+→K0Sπ0e+νe is measured for the first time using 7.93 fb−1 of e+e− annihilation data collected at the center-of-mass energy s√=3.773~GeV with the BESIII detector operating at the BEPCII collider, and is determined to be B(D+→K0Sπ0e+νe) = (0.881 ± 0.017stat. ± 0.016syst.)\%. Based on an analysis of the D+→K0Sπ0e+νe decay dynamics, we observe the S-wave and P-wave components with fractions of fS-wave = (6.13 ± 0.27stat. ± 0.30syst.)% and fK¯∗(892)0 = (93.88 ± 0.27stat. ± 0.29syst.)\%, respectively. From these results, we obtain the branching fractions B(D+→(K0Sπ0)S-wave e+νe) = (5.41 ± 0.35stat. ± 0.37syst.)×10−4 and B(D+→K¯∗(892)0e+νe) = (4.97 ± 0.11stat. ± 0.12syst.)\%. In addition, the hadronic form-factor ratios of D+→K¯∗(892)0e+νe at q2=0, assuming a single-pole dominance parameterization, are determined to be rV=V(0)A1(0)=1.43 ± 0.07stat. ± 0.03syst. and r2=A2(0)A1(0)=0.72 ± 0.06stat. ± 0.02syst.