Refine
Document Type
- Working Paper (10)
Language
- English (10)
Has Fulltext
- yes (10)
Is part of the Bibliography
- no (10)
Keywords
- oil price (5)
- core (2)
- crude oil (2)
- expectations (2)
- gasoline price (2)
- household survey (2)
- inflation (2)
- recovery (2)
- shipping (2)
- Brent (1)
Institute
The propagation of regional shocks in housing markets: evidence from oil price shocks in Canada
(2018)
Shocks to the demand for housing that originate in one region may seem important only for that regional housing market. We provide evidence that such shocks can also affect housing markets in other regions. Our analysis focuses on the response of Canadian housing markets to oil price shocks. Oil price shocks constitute an important source of exogenous regional variation in income in Canada because oil production is highly geographically concentrated. We document that, at the national level, real oil price shocks account for 11% of the variability in real house price growth over time. At the regional level, we find that unexpected increases in the real price of oil raise housing demand and real house prices not only in oil-producing regions, but also in other regions. We develop a theoretical model of the propagation of real oil price shocks across regions that helps understand this finding. The model differentiates between oil-producing and non-oil-producing regions and incorporates multiple sectors, trade between provinces, government redistribution, and consumer spending on fuel. We empirically confirm the model prediction that oil price shocks are propagated to housing markets in non-oil-producing regions by the government redistribution of oil revenue and by increased interprovincial trade.
Are product spreads useful for forecasting? An empirical evaluation of the Verleger hypothesis
(2013)
Notwithstanding a resurgence in research on out-of-sample forecasts of the price of oil in recent years, there is one important approach to forecasting the real price of oil which has not been studied systematically to date. This approach is based on the premise that demand for crude oil derives from the demand for refined products such as gasoline or heating oil. Oil industry analysts such as Philip Verleger and financial analysts widely believe that there is predictive power in the product spread, defined as the difference between suitably weighted refined product market prices and the price of crude oil. Our objective is to evaluate this proposition. We derive from first principles a number of alternative forecasting model specifications involving product spreads and compare these models to the no-change forecast of the real price of oil. We show that not all product spread models are useful for out-of-sample forecasting, but some models are, even at horizons between one and two years. The most accurate model is a time-varying parameter model of gasoline and heating oil spot spreads that allows the marginal product market to change over time. We document MSPE reductions as high as 20% and directional accuracy as high as 63% at the two-year horizon, making product spread models a good complement to forecasting models based on economic fundamentals, which work best at short horizons.
Since the 1970s, exports and imports of manufactured goods have been the engine of international trade and much of that trade relies on container shipping. This paper introduces a new monthly index of the volume of container trade to and from North America. Incorporating this index into a structural macroeconomic VAR model facilitates the identification of shocks to domestic U.S. demand as well as foreign demand for U.S. manufactured goods. We show that, unlike in the Great Recession, the primary determinant of the U.S. economic contraction in early 2020 was a sharp drop in domestic demand. Although detrended data for personal consumption expenditures and manufacturing output suggest that the U.S. economy has recovered to near 90% of pre-pandemic levels as of March 2021, our structural VAR model shows that the component of manufacturing output driven by domestic demand had only recovered to 59% of pre-pandemic levels and that of real personal consumption only to 76%. The difference is mainly accounted for by unexpected reductions in frictions in the container shipping market.
We study the effects of releases from the U.S. Strategic Petroleum Reserve (SPR) within the context of fully specified models of the global oil market that explicitly allow for storage demand as well as unanticipated changes in the SPR. We show that historically SPR policy interventions, defined as sequences of exogenous SPR shocks during selected periods, have helped stabilize the price of oil. Their effect on the price of oil, however, has been modest. For example, the cumulative effect of the SPR releases after the invasion of Kuwait in 1990 was a reduction of $2/barrel in the real price of oil after 7 months. Whereas emergency drawdowns tend to lower the real price of oil, we find that exchanges tend to raise the real price of oil in the long run. We also provide a detailed analysis of the benefits of the 2018 White House proposal to sell off half of the SPR within the next decade. We show that the expected fiscal benefits of this plan are somewhat higher than the revenue of $16.6 billion dollars projected by the White House.
The conventional wisdom that inflation expectations respond to the level of the price of oil (or the price of gasoline) is based on testing the null hypothesis of a zero slope coefficient in a static single-equation regression model fit to aggregate data. Given that the regressor in this model is not stationary, the null distribution of the t-test statistic is nonstandard, invalidating the use of the normal approximation. Once the critical values are adjusted, these regressions provide no support for the conventional wisdom. Using a new structural vector regression model, however, we demonstrate that gasoline price shocks may indeed drive one-year household inflation expectations. The model shows that there have been several such episodes since 1990. In particular, the rise in household inflation expectations between 2009 and 2013 is almost entirely explained by a large increase in gasoline prices. However, on average, gasoline price shocks account for only 39% of the variation in household inflation expectations since 1981.
There has been much interest in the relationship between the price of crude oil, the value of the U.S. dollar, and the U.S. interest rate since the 1980s. For example, the sustained surge in the real price of oil in the 2000s is often attributed to the declining real value of the U.S. dollar as well as low U.S. real interest rates, along with a surge in global real economic activity. Quantifying these effects one at a time is difficult not only because of the close relationship between the interest rate and the exchange rate, but also because demand and supply shocks in the oil market in turn may affect the real value of the dollar and real interest rates. We propose a novel identification strategy for disentangling the causal effects of traditional oil demand and oil supply shocks from the effects of exogenous variation in the U.S. real interest rate and in the real value of the U.S. dollar. Our approach exploits a combination of sign and zero restrictions and narrative restrictions motivated by economic theory and extraneous evidence. We empirically evaluate popular views about the role of exogenous real exchange rate shocks in driving the real price of oil, and we examine the extent to which shocks in the global oil market drive the U.S real exchange rate and U.S. real interest rates. Our evidence for the first time provides direct empirical support for theoretical models of the link between these variables.
Using a novel dataset, we develop a structural model of the Very Large Crude Carrier (VLCC) market between the Arabian Gulf and the Far East. We study how fluctuations in oil tanker rates, oil exports, shipowner profits, and bunker fuel prices are determined by shocks to the supply and demand for oil tankers, to the utilization of tankers, and to the cost of operating tankers, including bunker fuel costs. Our analysis shows that time charter rates are largely unresponsive to tanker cost shocks. In response to higher costs, voyage profits decline, as cost shocks are only partially passed on to round-trip voyage rates. Oil exports from the Arabian Gulf also decline, reflecting lower demand for VLCCs. Positive utilization shocks are associated with higher profits, a slight increase in time charter rates and lower fuel prices and oil export volumes. Tanker supply and tanker demand shocks have persistent effects on time charter rates, round-trip voyage rates, the volume of oil exports, fuel prices, and profits with the expected sign.
We propose a new instrument for estimating the price elasticity of gasoline demand that exploits systematic differences across U.S. states in the pass-through of oil price shocks to retail gasoline prices. These differences, which are primarily driven by variation in the cost of producing and distributing gasoline, create cross-sectional dispersion in gasoline price growth in response to an aggregate oil price shock. We find that the elasticity was stable near -0.3 until the end of 2014, but subsequently rose to about -0.2. Our estimates inform the recent debate about gasoline-tax holidays and policies to reduce carbon emissions.
Consumers purchase energy in many forms. Sometimes energy goods are consumed directly, for instance, in the form of gasoline used to operate a vehicle, electricity to light a home, or natural gas to heat a home. At other times, the cost of energy is embodied in the prices of goods and services that consumers buy, say when purchasing an airline ticket or when buying online garden furniture made from plastic to be delivered by mail. Previous research has focused on quantifying the pass-through of the price of crude oil or the price of motor gasoline to U.S. inflation. Neither approach accounts for the fact that percent changes in refined product prices need not be proportionate to the percent change in the price of oil, that not all energy is derived from oil, and that the correlation of price shocks across energy markets is far from one. This paper develops a vector autoregressive model that quantifies the joint impact of shocks to several energy prices on headline and core CPI inflation. Our analysis confirms that focusing on gasoline price shocks alone will underestimate the inflationary pressures emanating from the energy sector, but not enough to overturn the conclusion that much of the observed increase in headline inflation in 2021 and 2022 reflected non-energy price shocks.
Predictions of oil prices reaching $100 per barrel during the winter of 2021/22 have raised fears of persistently high inflation and rising inflation expectations for years to come. We show that these concerns have been overstated. A $100 oil scenario of the type discussed by many observers, would only briefly raise monthly headline inflation, before fading rather quickly. However, the short-run effects on headline inflation would be sizable. For example, on a yearover- year basis, headline PCE inflation would increase by 1.8 percentage points at the end of 2021 under this scenario, and by 0.4 percentage points at the end of 2022. In contrast, the impact on measures of core inflation such as trimmed mean PCE inflation is only 0.4 and 0.3 percentage points in 2021 and 2022, respectively. These estimates already account for any increases in inflation expectations under the scenario. The peak response of the 1-year household inflation expectation would be 1.2 percentage points, while that of the 5-year expectation would be 0.2 percentage points.