Refine
Language
- English (93)
Has Fulltext
- yes (93)
Is part of the Bibliography
- no (93)
Keywords
- Heavy-ion collisions (4)
- Diffraction (3)
- Beam Energy Scan (2)
- Chiral Magnetic Effect (2)
- Collectivity (2)
- Correlation (2)
- Elastic scattering (2)
- Shear viscosity (2)
- B-slope (1)
- Beam energy scan (1)
Institute
In high-energy heavy-ion collisions, partonic collectivity is evidenced by the constituent quark number scaling of elliptic flow anisotropy for identified hadrons. A breaking of this scaling and dominance of baryonic interactions is found for identified hadron collective flow measurements in sNN−−−√ = 3 GeV Au+Au collisions. In this paper, we report measurements of the first- and second-order azimuthal anisotropic parameters, v1 and v2, of light nuclei (d, t, 3He, 4He) produced in sNN−−−√ = 3 GeV Au+Au collisions at the STAR experiment. An atomic mass number scaling is found in the measured v1 slopes of light nuclei at mid-rapidity. For the measured v2 magnitude, a strong rapidity dependence is observed. Unlike v2 at higher collision energies, the v2 values at mid-rapidity for all light nuclei are negative and no scaling is observed with the atomic mass number. Calculations by the Jet AA Microscopic Transport Model (JAM), with baryonic mean-field plus nucleon coalescence, are in good agreement with our observations, implying baryonic interactions dominate the collective dynamics in 3 GeV Au+Au collisions at RHIC.
The strong force, as one of the four fundamental forces at work in the universe, governs interactions of quarks and gluons, and binds together the atomic nucleus. Notwithstanding decades of progress since Yukawa first developed a description of the force between nucleons in terms of meson exchange, a full understanding of the strong interaction remains a major challenge in modern science. One remaining difficulty arises from the non-perturbative nature of the strong force, which leads to the phenomenon of quark confinement at distance scales on the order of the size of the proton. Here we show that in relativistic heavy-ion collisions, where quarks and gluons are set free over an extended volume, two species of produced vector (spin-1) mesons, namely ϕ and K∗0, emerge with a surprising pattern of global spin alignment. In particular, the global spin alignment for ϕ is unexpectedly large, while that for K∗0 is consistent with zero. The observed spin-alignment pattern and magnitude for the ϕ cannot be explained by conventional mechanisms, while a model with strong force fields accommodates the current data. This is the first time that the strong force field is experimentally supported as a key mechanism that leads to global spin alignment. We extract a quantity proportional to the intensity of the field of the strong force. Within the framework of the Standard Model, where the strong force is typically described in the quark and gluon language of Quantum Chromodynamics, the field being considered here is an effective proxy description. This is a qualitatively new class of measurement, which opens a new avenue for studying the behaviour of strong force fields via their imprint on spin alignment.
Measurements of mass and Λ binding energy of 4ΛH and 4ΛHe in Au+Au collisions at sNN−−−√=3 GeV are presented, with an aim to address the charge symmetry breaking (CSB) problem in hypernuclei systems with atomic number A = 4. The Λ binding energies are measured to be 2.22±0.06(stat.)±0.14(syst.) MeV and 2.38±0.13(stat.)±0.12(syst.) MeV for 4ΛH and 4ΛHe, respectively. The measured Λ binding-energy difference is 0.16±0.14(stat.)±0.10(syst.) MeV for ground states. Combined with the γ-ray transition energies, the binding-energy difference for excited states is −0.16±0.14(stat.)±0.10(syst.) MeV, which is negative and comparable to the value of the ground states within uncertainties. These new measurements on the Λ binding-energy difference in A = 4 hypernuclei systems are consistent with the theoretical calculations that result in ΔB4Λ(1+exc)≈−ΔB4Λ(0+g.s.)<0 and present a new method for the study of CSB effect using relativistic heavy-ion collisions.
We present the first inclusive measurements of the invariant and SoftDrop jet mass in proton-proton collisions at s√=200 GeV at STAR. The measurements are fully corrected for detector effects, and reported differentially in both the jet transverse momentum and jet radius parameter. We compare the measurements to established leading-order Monte Carlo event generators and find that STAR-tuned PYTHIA-6 reproduces the data, while LHC tunes of PYTHIA-8 and HERWIG-7 do not agree with the data, providing further constraints on parameter tuning. Finally, we observe that SoftDrop grooming, for which the contribution of wide-angle non-perturbative radiation is suppressed, shifts the jet mass distributions into closer agreement with the partonic jet mass as determined by both PYTHIA-8 and a next-to-leading-logarithmic accuracy perturbative QCD calculation. These measurements complement recent LHC measurements in a different kinematic region, as well as establish a baseline for future jet mass measurements in heavy-ion collisions at RHIC.
We report a systematic measurement of cumulants, Cn, for net-proton, proton and antiproton, and correlation functions, κn, for proton and antiproton multiplicity distributions up to the fourth order in Au+Au collisions at sNN−−−√ = 7.7, 11.5, 14.5, 19.6, 27, 39, 54.4, 62.4 and 200 GeV. The Cn and κn are presented as a function of collision energy, centrality and kinematic acceptance in rapidity, y, and transverse momentum, pT. The data were taken during the first phase of the Beam Energy Scan (BES) program (2010 -- 2017) at the Relativistic Heavy Ion Collider (RHIC) facility. The measurements are carried out at midrapidity (|y|< 0.5) and transverse momentum 0.4 < pT < 2.0 GeV/c, using the STAR detector at RHIC. We observe a non-monotonic energy dependence (sNN−−−√ = 7.7 -- 62.4 GeV) of the net-proton C4/C2 with the significance of 3.1σ for the 0-5\% central Au+Au collisions. This is consistent with the expectations of critical fluctuations in a QCD-inspired model. Thermal and transport model calculations show a monotonic variation with sNN−−−√. For the multiparticle correlation functions, we observe significant negative values for a two-particle correlation function, κ2, of protons and antiprotons, which are mainly due to the effects of baryon number conservation. Furthermore, it is found that the four-particle correlation function, κ4, of protons plays a role in determining the energy dependence of proton C4/C1 below 19.6 GeV, which cannot be solely understood by the negative values of κ2 for protons.
In high-energy heavy-ion collisions, partonic collectivity is evidenced by the constituent quark number scaling of elliptic flow anisotropy for identified hadrons. A breaking of this scaling and dominance of baryonic interactions is found for identified hadron collective flow measurements in sNN−−−√ = 3 GeV Au+Au collisions. In this paper, we report measurements of the first-order and second-order azimuthal anisotropic parameters, v1 and v2, of light nuclei (d, t, 3He, 4He) produced in sNN−−−√ = 3 GeV Au+Au collisions at the STAR experiment. An atomic mass number scaling is found in the measured v1 slopes of light nuclei at mid-rapidity. For the measured v2 magnitude, a strong rapidity dependence is observed. Unlike v2 at higher collision energies, the v2 values at mid-rapidity for all light nuclei are negative and no scaling is observed with the atomic mass number. Calculations by the Jet AA Microscopic Transport Model (JAM), with baryonic mean-field plus nucleon coalescence, are in good agreement with our observations, implying baryonic interactions dominate the collective dynamics in 3 GeV Au+Au collisions at RHIC.
We report cumulants of the proton multiplicity distribution from dedicated fixed-target Au+Au collisions at 3.0 GeV, measured by the STAR experiment in the kinematic acceptance of rapidity (y) and transverse momentum (pT) within −0.5<y<0 and 0.4<pT<2.0 GeV/c. In the most central 0--5\% collisions, a proton cumulant ratio is measured to be C4/C2=−0.85±0.09 (stat.)±0.82 (syst.), which is less than unity, the Poisson baseline. The hadronic transport UrQMD model reproduces our C4/C2 in the measured acceptance. Compared to higher energy results and the transport model calculations, the suppression in C4/C2 is consistent with fluctuations driven by baryon number conservation and indicates an energy regime dominated by hadronic interactions. These data imply that the QCD critical region, if created in heavy-ion collisions, could only exist at energies higher than 3\,GeV.
The STAR Collaboration reports measurements of the transverse single-spin asymmetry (TSSA) of inclusive 𝜋0 at center-of-mass energies (√𝑠) of 200 GeV and 500 GeV in transversely polarized proton-proton collisions in the pseudo-rapidity region 2.7 to 4.0. The results at the two different energies show a continuous increase of the TSSA with Feynman-𝑥, and, when compared to previous measurements, no dependence on √𝑠 from 19.4 GeV to 500 GeV is found. To investigate the underlying physics leading to this large TSSA, different topologies have been studied. 𝜋0 with no nearby particles tend to have a higher TSSA than inclusive 𝜋0. The TSSA for inclusive electromagnetic jets, sensitive to the Sivers effect in the initial state, is substantially smaller, but shows the same behavior as the inclusive 𝜋0 asymmetry as a function of Feynman-𝑥. To investigate final-state effects, the Collins asymmetry of 𝜋0 inside electromagnetic jets has been measured. The Collins asymmetry is analyzed for its dependence on the 𝜋0 momentum transverse to the jet thrust axis and its dependence on the fraction of jet energy carried by the 𝜋0. The asymmetry was found to be small in each case for both center-of-mass energies. All the measurements are compared to QCD-based theoretical calculations for transverse-momentum-dependent parton distribution functions and fragmentation functions. Some discrepancies are found, which indicates new mechanisms might be involved.
Measurements of mass and Λ binding energy of 4ΛH and 4ΛHe in Au+Au collisions at sNN−−−√=3 GeV are presented, with an aim to address the charge symmetry breaking (CSB) problem in hypernuclei systems with atomic number A = 4. The Λ binding energies are measured to be 2.22±0.06(stat.)±0.14(syst.) MeV and 2.38±0.13(stat.)±0.12(syst.) MeV for 4ΛH and 4ΛHe, respectively. The measured Λ binding-energy difference is 0.16±0.14(stat.)±0.10(syst.) MeV for ground states. Combined with the γ-ray transition energies, the binding-energy difference for excited states is −0.16±0.14(stat.)±0.10(syst.) MeV, which is negative and comparable to the value of the ground states within uncertainties. These new measurements on the Λ binding-energy difference in A = 4 hypernuclei systems are consistent with the theoretical calculations that result in ΔB4Λ(1+exc)≈−ΔB4Λ(0+g.s.)<0 and present a new method for the study of CSB effect using relativistic heavy-ion collisions.
Partons traversing the strongly interacting medium produced in heavy-ion collisions are expected to lose energy depending on their color charge and mass. We measure the nuclear modification factors for charm- and bottom-decay electrons, defined as the ratio of yields, scaled by the number of binary nucleon-nucleon collisions, in sNN−−−√ = 200 GeV Au+Au collisions to p+p collisions (RAA), or in central to peripheral Au+Au collisions (RCP). We find the bottom-decay electron RAA and RCP to be significantly higher than that of charm-decay electrons. Model calculations including mass-dependent parton energy loss in a strongly coupled medium are consistent with the measured data. These observations provide clear evidence of mass ordering of charm and bottom quark energy loss when traversing through the strongly coupled medium created in heavy-ion collisions.