Refine
Year of publication
Document Type
- Article (598)
- Preprint (422)
- Working Paper (1)
Language
- English (1021)
Has Fulltext
- yes (1021)
Is part of the Bibliography
- no (1021)
Keywords
- BESIII (20)
- e +-e − Experiments (20)
- Branching fraction (15)
- Particle and Resonance Production (10)
- Quarkonium (9)
- Charm Physics (6)
- Hadron-Hadron Scattering (6)
- LHC (6)
- Spectroscopy (6)
- Hadronic decays (5)
Institute
- Physik (907)
- Frankfurt Institute for Advanced Studies (FIAS) (328)
- Informatik (217)
- Informatik und Mathematik (3)
- Biochemie und Chemie (1)
- Center for Financial Studies (CFS) (1)
- House of Finance (HoF) (1)
- Medizin (1)
- Sustainable Architecture for Finance in Europe (SAFE) (1)
- Wirtschaftswissenschaften (1)
We perform the first investigation of the process e+e−→K+K−ψ(2S) and report its Born cross sections over a range of center-of-mass energies from 4.699 to 4.951~GeV. The measurements are carried out using several partial reconstruction techniques using data samples collected by the BESIII detector with a total integrated luminosity of 2.5~fb−1. We search for new tetraquark candidates Z±cs in the decays Z±cs→K±ψ(2S). No significant Z±cs signals are observed.
By analyzing (27.12±0.14)×108 ψ(3686) events accumulated with the BESIII detector, the decay ηc(2S)→K+K−η is observed for the first time with a significance of 6.2σ after considering systematic uncertainties. The product of the branching fractions of ψ(3686)→γηc(2S) and ηc(2S)→K+K−η is measured to be B(ψ(3686)→γηc(2S))×B(ηc(2S)→K+K−η)=(2.39±0.32±0.34)×10−6, where the first uncertainty is statistical, and the second one is systematic. The branching fraction of ηc(2S)→K+K−η is determined to be B(ηc(2S)→K+K−η)=(3.42±0.46±0.48±2.44)×10−3, where the third uncertainty is due to the branching fraction of ψ(3686)→γηc(2S). Using a recent BESIII measurement of B(ηc(2S)→K+K−π0), we also determine the ratio between the branching fractions of ηc(2S)→K+K−η and ηc(2S)→K+K−π0 to be 1.49±0.22±0.25, which is consistent with the previous result of BaBar at a comparable precision level.
Search for X(3872)→π⁰π⁰χc₁,₂
(2024)
Using 10.1 fb−1 of e+e− collision data collected by the BESIII detector with center-of-mass energies between 4.15 GeV and 4.30 GeV, we search for the decays X(3872)→π0π0χc1,2, where the X(3872) is produced in e+e−→γX(3872). No evidence above 3σ is found for either decay. Upper limits at the 90% C.L. on the branching fractions of X(3872)→π0π0χc1,2 normalized to the branching fraction of X(3872)→π+π−J/ψ are set to be B(X(3872)→π0π0χc1)/B(X(3872)→π+π−J/ψ)<1.1 and B(X(3872)→π0π0χc2)/B(X(3872)→π+π−J/ψ)<0.5, taking into account both statistical and systematic uncertainties.
Using (2.712±0.014)×109 ψ(3686) events collected with the BESIII detector operating at the BEPCII, we find an evidence of the ηc(2S)→K+K−η′ decay with a statistical significance of 3.1σ. Its decay branching fraction is measured to be (12.24±4.60(stat.)±2.37(syst.)±4.68(extr.))×10−4, where the first uncertainty is statistical, the second is systematic, and the third uncertainty is from the branching fraction of the ψ(3686)→γηc(2S) decay. The upper limit on the product branching fraction B[ψ(3686)→γηc(2S)]× B[ηc(2S)→K+K−η′] is set to be 1.14×10−6 at 90% confidence level. In addition, the branching fractions of χc1→K+K−η′ and χc2→K+K−η′ are updated to be (8.47±0.09(stat.)±0.47(syst.))×10−4 and (1.53±0.04(stat.)±0.08(syst.))×10−4, respectively. The precision is improved by twofold.
Using 2.93 fb−1 of e+e− collision data collected with the BESIII detector at the center-of-mass energy of 3.773 GeV, we investigate the semileptonic decays D+→π+π−ℓ+νℓ (ℓ=e and μ). The D+→f0(500)μ+νμ decay is observed for the first time. By analyzing simultaneously the differential decay rates of D+→f0(500)μ+νμ and D+→f0(500)e+νe in different ℓ+νℓ four-momentum transfer intervals, the product of the relevant hadronic form factor ff0+(0) and the magnitude of the c→d Cabibbo-Kobayashi-Maskawa matrix element |Vcd| is determined to be ff0+(0)|Vcd|=0.0787±0.0060stat±0.0033syst for the first time. With the input of |Vcd| from the global fit in the standard model, we determine ff0+(0)=0.350±0.027stat±0.015syst. The absolute branching fractions of D+→f0(500)(π+π−)μ+νμ and D+→ρ0(π+π−)μ+νμ are determined as (0.72±0.13stat±0.10syst)×10−3 and (1.64±0.13stat±0.11syst)×10−3. Combining these results with those of previous BESIII measurements on their semielectronic counterparts from the same data sample, we test lepton flavor universality by measuring the branching fraction ratios BD+→ρ0μ+νμ/BD+→ρ0e+νe = 0.88±0.10 and BD+→f0(500)μ+νμ/BD+→f0(500)e+νe = 1.14±0.28, which are compatible with the standard model expectation.
Using 2.93 fb−1 of e+e− collision data collected with the BESIII detector at the center-of-mass energy of 3.773 GeV, we investigate the semileptonic decays D+→π+π−ℓ+νℓ (ℓ=e and μ). The D+→f0(500)μ+νμ decay is observed for the first time. By analyzing simultaneously the differential decay rates of D+→f0(500)μ+νμ and D+→f0(500)e+νe in different ℓ+νℓ four-momentum transfer intervals, the product of the relevant hadronic form factor ff0+(0) and the magnitude of the c→d Cabibbo-Kobayashi-Maskawa matrix element |Vcd| is determined to be ff0+(0)|Vcd|=0.0787±0.0060stat±0.0033syst for the first time. With the input of |Vcd| from the global fit in the standard model, we determine ff0+(0)=0.350±0.027stat±0.015syst. The absolute branching fractions of D+→f0(500)(π+π−)μ+νμ and D+→ρ0(π+π−)μ+νμ are determined as (0.72±0.13stat±0.10syst)×10−3 and (1.64±0.13stat±0.11syst)×10−3. Combining these results with those of previous BESIII measurements on their semielectronic counterparts from the same data sample, we test lepton flavor universality by measuring the branching fraction ratios BD+→ρ0μ+νμ/BD+→ρ0e+νe=0.88±0.10 and BD+→f0(500)μ+νμ/BD+→f0(500)e+νe = 1.14±0.28, which are compatible with the standard model expectation.
The CP-even fractions (F+) of the decays D0→π+π−π0 and D0→K+K−π0 are measured with a quantum-correlated ψ(3770)→DD¯ data sample collected by the BESIII experiment corresponding to an integrated luminosity of 7.93 fb−1. The results are Fπ+π−π0+=0.9406±0.0036±0.0021 and FK+K−π0+=0.631±0.014±0.011, where the first uncertainties are statistical and the second systematic. These measurements are consistent with the previous determinations, and the uncertainties for Fπ+π−π0+ and FK+K−π0+ are reduced by factors of 3.9 and 2.6, respectively. The reported results provide important inputs for the precise measurement of the angle γ of the Cabibbo-Kobayashi-Maskawa matrix and indirect CP violation in charm mixing.
In the effective field theory, the massless dark photon γ′ can only couple with the Standard Model particle through operators of dimension higher than four, thereby offering a high sensitivity to the new physics energy scale. Using 7.9 fb−1 of e+e− collision data collected at s√=3.773 GeV with the BESIII detector at the BEPCII collider, we measure the effective flavor-changing neutral current coupling of cuγ′ in D0→ωγ′ and D0→γγ′ processes to search for the massless dark photon. No significant signals are observed, and the upper limits at the 90% confidence level on the massless dark photon branching fraction are set to be 1.1×10−5 and 2.0×10−6 for D0→ωγ′ and D0→γγ′, respectively. These results provide the most stringent constraint on the new physics energy scale associated with cuγ′ coupling in the world, with the new physics energy scale related parameter |C|2+|C5|2<8.2×10−17 GeV−2 at the 90% confidence level, playing a unique role in the dark sector search with the charm sector.
The branching fraction of D+→K0Sπ0e+νe is measured for the first time using 7.93 fb−1 of e+e− annihilation data collected at the center-of-mass energy s√=3.773~GeV with the BESIII detector operating at the BEPCII collider, and is determined to be B(D+→K0Sπ0e+νe) = (0.881 ± 0.017stat. ± 0.016syst.)\%. Based on an analysis of the D+→K0Sπ0e+νe decay dynamics, we observe the S-wave and P-wave components with fractions of fS-wave = (6.13 ± 0.27stat. ± 0.30syst.)% and fK¯∗(892)0 = (93.88 ± 0.27stat. ± 0.29syst.)\%, respectively. From these results, we obtain the branching fractions B(D+→(K0Sπ0)S-wave e+νe) = (5.41 ± 0.35stat. ± 0.37syst.)×10−4 and B(D+→K¯∗(892)0e+νe) = (4.97 ± 0.11stat. ± 0.12syst.)\%. In addition, the hadronic form-factor ratios of D+→K¯∗(892)0e+νe at q2=0, assuming a single-pole dominance parameterization, are determined to be rV=V(0)A1(0)=1.43 ± 0.07stat. ± 0.03syst. and r2=A2(0)A1(0)=0.72 ± 0.06stat. ± 0.02syst.
Using (2712±14) × 106 ψ(2S) events collected with the BESIII detector at the BEPCII collider, we search for the decays ηc(2S)→ωω and ηc(2S)→ωϕ via the process ψ(2S)→γηc(2S). Evidence of ηc(2S)→ωω is found with a statistical significance of 3.2σ. The branching fraction is measured to be B(ηc(2S)→ωω)=(5.65±3.77(stat.)±5.32(syst.))×10−4. No statistically significant signal is observed for the decay ηc(2S)→ωϕ. The upper limit of the branching fraction at the 90\% confidence level is determined to be B(ψ(2S)→γηc(2S),ηc(2S)→ωϕ)<2.24×10−7. We also update the branching fractions of χcJ→ωω and χcJ→ωϕ decays via the ψ(2S)→γχcJ transition. The branching fractions are determined to be B(χc0→ωω)=(10.63±0.11±0.46)×10−4, B(χc1→ωω)=(6.39±0.07±0.29)×10−4, B(χc2→ωω)=(8.50±0.08±0.38)×10−4, B(χc0→ωϕ)=(1.18±0.03±0.05)×10−4, B(χc1→ωϕ)=(2.03±0.15±0.12)×10−5, and B(χc2→ωϕ)=(9.37±1.07±0.59)×10−6, where the first uncertainties are statistical and the second are systematic.