Refine
Year of publication
Document Type
- Article (126)
- Preprint (1)
- Working Paper (1)
Language
- English (128)
Has Fulltext
- yes (128)
Is part of the Bibliography
- no (128)
Keywords
- Branching fraction (3)
- Electroweak interaction (2)
- Leptonic, semileptonic & radiative decays (2)
- Quarkonium (2)
- RHIC (2)
- Relativistic heavy-ion collisions (2)
- BESIII (1)
- Charged-particle multiplicity (1)
- Charm physics (1)
- Charmed mesons (1)
By using 6.32 fb−1 of data collected with the BESIII detector at center-of-mass energies between 4.178 and 4.226 GeV, we perform an amplitude analysis of the decay D+s ! K0S + 0 and determine the relative fractions and phase differences of different intermediate processes, which include K0S (770)+, K0S (1450)+, K (892)0 +, K (892)+ 0, and K (1410)0 +. With the detection efficiency based on the amplitude analysis results, the absolute branching fraction is measured to be B(D+s ! K0S + 0) = (5.43 ± 0.30stat ± 0.15syst) × 10−3.
We present the first experimental search for the rare charm decay D0→π0ν¯ν. It is based on an e+e− collision sample consisting of 10.6×10^6 pairs of D0¯D0 mesons collected by the BESIII detector at √s=3.773 GeV, corresponding to an integrated luminosity of 2.93 fb^−1. A data-driven method is used to ensure the reliability of the background modeling. No significant D0→π0ν¯ν signal is observed in data and an upper limit of the branching fraction is set to be 2.1×10^-4 at the 90% confidence level. This is the first experimental constraint on charmed-hadron decays into dineutrino final states.
The Born cross sections of the e+e− → D*+D*− and e+e− → D*+D− processes are measured using e+e− collision data collected with the BESIII experiment at center-of-mass energies from 4.085 to 4.600 GeV, corresponding to an integrated luminosity of 15.7 fb−1. The results are consistent with and more precise than the previous measurements by the Belle, Babar and CLEO collaborations. The measurements are essential for understanding the nature of vector charmonium and charmonium-like states.
We measure the inclusive semielectronic decay branching fraction of the D+s meson. A double-tag technique is applied to e+e− annihilation data collected by the BESIII experiment at the BEPCII collider, operating in the center-of-mass energy range 4.178–4.230 GeV. We select positrons fromD+s→Xe+νe with momenta greater than 200 MeV/c and determine the laboratory momentum spectrum, accounting for the effects of detector efficiency and resolution. The total positron yield and semielectronic branching fraction are determined by extrapolating this spectrum below the momentum cutoff. We measure the D+s semielectronic branching fraction to be(6.30±0.13(stat.)±0.09(syst.)±0.04(ext.))%, showing no evidence for unobserved exclusive semielectronic modes. We combine this result with external data taken from literature to determine the ratio of the D+s and D0 semielectronic widths, Γ(D+s→Xe+νe)Γ(D0→Xe+νe)=0.790±0.016(stat.)±0.011(syst.)±0.016(ext.). Our results are consistent with and more precise than previous measurements.
By analyzing 6.32 fb − 1 of e+ e− annihilation data collected at the center-of-mass energies between 4.178 and 4.226 GeV with the BESIII detector, we determine the branching fraction of the leptonic decay D + s → τ + ντ, with τ+ → π + π0¯ντ, to be B D + s → τ + ν τ = (5.29 ± 0.25 stat ± 0.20 syst) %. We estimate the product of the Cabibbo-Kobayashi-Maskawa matrix element |Vcs|and the D + s decay constant f D + s to be f D + s|Vcs| = (244.8 ± 5.8 stat ± 4.8syst) MeV, using the known values of the τ + and D + s masses as well as the D + s lifetime, together with our branching fraction measurement. Combining the value of |Vcs| obtained from a global fit in the standard model and f D + s from lattice quantum chromodynamics, we obtain f D + s = (251.6 ± 5.9 stat ± 4.9syst) MeV and |Vcs| = 0.980 ± 0.023 stat ± 0.019 syst. Using the branching fraction of B D + s → μ + νμ = (5.35±0.21)×10−3, we obtain the ratio of the branching fractions B D + s → τ + ντ/B D +s → μ+νμ = 9.89±0.71, which is consistent with the standard model prediction of lepton flavor universality.
Using data samples collected with the BESIII detector operating at the BEPCII storage ring at center-of-mass energies from 4.178 to 4.600 GeV, we study the process eþe− → π0Xð3872Þγ and search for Zcð4020Þ0 → Xð3872Þγ. We find no significant signal and set upper limits on σðeþe− → π0Xð3872ÞγÞ · BðXð3872Þ → πþπ−J=ψÞ and σðeþe− → π0Zcð4020Þ0Þ · BðZcð4020Þ0 → Xð3872ÞγÞ · BðXð3872Þ → πþπ−J=ψÞ for each energy point at 90% confidence level, which is of the order of several tenths pb.
Using a sample of (10.09±0.04)×109 J/ψ events collected with the BESIII detector, a partial wave analysis of J/ψ→γη′η′ is performed.The masses and widths of the observed resonances and their branching fractions are reported. The main contribution is from J/ψ→γf0(2020) with f0(2020)→η′η′, which is found with a significance of greater than 25σ. The product branching fraction B(J/ψ → γf0(2020))⋅B(f0(2020) → η′η′ is measured to be (2.63±0.06(stat.) + 0.31−0.46(syst.))×10−4.
The electromagnetic process is studied with the initial-state-radiation technique using 7.5 fb−1 of data collected by the BESIII experiment at seven energy points from 3.773 to 4.600 GeV. The Born cross section and the effective form factor of the proton are measured from the production threshold to 3.0 GeV/ using the invariant-mass spectrum. The ratio of electric and magnetic form factors of the proton is determined from the analysis of the proton-helicity angular distribution.
We report results on the total and elastic cross sections in proton-proton collisions at √s = 200 GeV obtained with the Roman Pot setup of the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The elastic differential cross section was measured in the squared four-momentum transfer range 0.045 ≤ −t ≤ 0.135 GeV2. The value of the exponential slope parameter B of the elastic differential cross section dσ/dt ∼ e−Bt in the measured −t range was found to be B = 14.32 ± 0.09(stat.)+0.13 −0.28(syst.) GeV−2. The total cross section σtot, obtained from extrapolation of the dσ/dt to the optical point at −t = 0, is σtot = 54.67 ± 0.21(stat.)+1.28 −1.38(syst.) mb. We also present the values of the elastic cross section σel = 10.85 ± 0.03(stat.)+0..49 −0.41(syst.) mb, the elastic cross section integrated within the STAR t-range σ det el = 4.05 ± 0.01(stat.)+0.18−0.17(syst.) mb, and the inelastic cross section σinel = 43.82 ± 0.21(stat.)+1.37−1.44(syst.) mb. The results are compared with the world data
Investigation of the linear and mode-coupled flow harmonics in Au+Au collisions at √sNN = 200 GeV
(2020)
Flow harmonics (vn) of the Fourier expansion for the azimuthal distributions of hadrons are commonly employed to quantify the azimuthal anisotropy of particle production relative to the collision symmetry planes. While lower order Fourier coefficients (v2 and v3) are more directly related to the corresponding eccentricities of the initial state, the higher-order flow harmonics (vn>3) can be induced by a modecoupled response to the lower-order anisotropies, in addition to a linear response to the same-order anisotropies. These higher-order flow harmonics and their linear and mode-coupled contributions can be used to more precisely constrain the initial conditions and the transport properties of the medium in theoretical models. The multiparticle azimuthal cumulant method is used to measure the linear and mode-coupled contributions in the higher-order anisotropic flow, the mode-coupled response coefficients, and the correlations of the event plane angles for charged particles as functions of centrality and transverse momentum in Au+Au collisions at nucleon-nucleon center-of-mass energy √sN N= 200 GeV. The results are compared to similar LHC measurements as well as to several viscous hydrodynamic calculations with varying initial conditions.