Refine
Year of publication
Document Type
- Article (82)
- Preprint (2)
- Working Paper (1)
Language
- English (85)
Has Fulltext
- yes (85)
Is part of the Bibliography
- no (85)
Keywords
- Branching fraction (4)
- Charmed mesons (2)
- Electroweak interaction (2)
- Lepton colliders (2)
- Leptonic, semileptonic & radiative decays (2)
- Particle decays (2)
- Quarkonium (2)
- RHIC (2)
- e+-e− Experiments (2)
- BESIII (1)
The Born cross sections of the e+e− → D*+D*− and e+e− → D*+D− processes are measured using e+e− collision data collected with the BESIII experiment at center-of-mass energies from 4.085 to 4.600 GeV, corresponding to an integrated luminosity of 15.7 fb−1. The results are consistent with and more precise than the previous measurements by the Belle, Babar and CLEO collaborations. The measurements are essential for understanding the nature of vector charmonium and charmonium-like states.
By using 6.32 fb−1 of data collected with the BESIII detector at center-of-mass energies between 4.178 and 4.226 GeV, we perform an amplitude analysis of the decay D+s ! K0S + 0 and determine the relative fractions and phase differences of different intermediate processes, which include K0S (770)+, K0S (1450)+, K (892)0 +, K (892)+ 0, and K (1410)0 +. With the detection efficiency based on the amplitude analysis results, the absolute branching fraction is measured to be B(D+s ! K0S + 0) = (5.43 ± 0.30stat ± 0.15syst) × 10−3.
Though immensely successful, the standard model of particle physics does not offer any explanation as to why our Universe contains so much more matter than antimatter. A key to a dynamically generated matter–antimatter asymmetry is the existence of processes that violate the combined charge conjugation and parity (CP) symmetry1. As such, precision tests of CP symmetry may be used to search for physics beyond the standard model. However, hadrons decay through an interplay of strong and weak processes, quantified in terms of relative phases between the amplitudes. Although previous experiments constructed CP observables that depend on both strong and weak phases, we present an approach where sequential two-body decays of entangled multi-strange baryon–antibaryon pairs provide a separation between these phases. Our method, exploiting spin entanglement between the double-strange Ξ− baryon and its antiparticle2 Ξ¯+
, has enabled a direct determination of the weak-phase difference, (ξP − ξS) = (1.2 ± 3.4 ± 0.8) × 10−2 rad. Furthermore, three independent CP observables can be constructed from our measured parameters. The precision in the estimated parameters for a given data sample size is several orders of magnitude greater than achieved with previous methods3. Finally, we provide an independent measurement of the recently debated Λ decay parameter αΛ (refs. 4,5). The ΛΛ¯
asymmetry is in agreement with and compatible in precision to the most precise previous measurement.
By analyzing 6.32 fb − 1 of e+ e− annihilation data collected at the center-of-mass energies between 4.178 and 4.226 GeV with the BESIII detector, we determine the branching fraction of the leptonic decay D + s → τ + ντ, with τ+ → π + π0¯ντ, to be B D + s → τ + ν τ = (5.29 ± 0.25 stat ± 0.20 syst) %. We estimate the product of the Cabibbo-Kobayashi-Maskawa matrix element |Vcs|and the D + s decay constant f D + s to be f D + s|Vcs| = (244.8 ± 5.8 stat ± 4.8syst) MeV, using the known values of the τ + and D + s masses as well as the D + s lifetime, together with our branching fraction measurement. Combining the value of |Vcs| obtained from a global fit in the standard model and f D + s from lattice quantum chromodynamics, we obtain f D + s = (251.6 ± 5.9 stat ± 4.9syst) MeV and |Vcs| = 0.980 ± 0.023 stat ± 0.019 syst. Using the branching fraction of B D + s → μ + νμ = (5.35±0.21)×10−3, we obtain the ratio of the branching fractions B D + s → τ + ντ/B D +s → μ+νμ = 9.89±0.71, which is consistent with the standard model prediction of lepton flavor universality.
Based on an e+e− collision data sample corresponding to an integrated luminosity of 2.93 fb−1 collected with the BESIII detector at √s=3.773 GeV, the first amplitude analysis of the singly Cabibbo-suppressed decay D+→K+K0Sπ0 is performed. From the amplitude analysis, the K∗(892)+K0S component is found to be dominant with a fraction of (57.1±2.6±4.2)%, where the first uncertainty is statistical and the second systematic. In combination with the absolute branching fraction B(D+→K+K0Sπ0) measured by BESIII, we obtain B(D+→K∗(892)+K0S)=(8.69±0.40±0.64±0.51)×10−3, where the third uncertainty is due to the branching fraction B(D+→K+K0Sπ0). The precision of this result is significantly improved compared to the previous measurement. This result also differs from most of theoretical predictions by about 4σ, which may help to improve the understanding of the dynamics behind.
We measure the inclusive semielectronic decay branching fraction of the D+s meson. A double-tag technique is applied to e+e− annihilation data collected by the BESIII experiment at the BEPCII collider, operating in the center-of-mass energy range 4.178–4.230 GeV. We select positrons fromD+s→Xe+νe with momenta greater than 200 MeV/c and determine the laboratory momentum spectrum, accounting for the effects of detector efficiency and resolution. The total positron yield and semielectronic branching fraction are determined by extrapolating this spectrum below the momentum cutoff. We measure the D+s semielectronic branching fraction to be(6.30±0.13(stat.)±0.09(syst.)±0.04(ext.))%, showing no evidence for unobserved exclusive semielectronic modes. We combine this result with external data taken from literature to determine the ratio of the D+s and D0 semielectronic widths, Γ(D+s→Xe+νe)Γ(D0→Xe+νe)=0.790±0.016(stat.)±0.011(syst.)±0.016(ext.). Our results are consistent with and more precise than previous measurements.
Using data samples collected with the BESIII detector operating at the BEPCII storage ring at center-of-mass energies from 4.178 to 4.600 GeV, we study the process eþe− → π0Xð3872Þγ and search for Zcð4020Þ0 → Xð3872Þγ. We find no significant signal and set upper limits on σðeþe− → π0Xð3872ÞγÞ · BðXð3872Þ → πþπ−J=ψÞ and σðeþe− → π0Zcð4020Þ0Þ · BðZcð4020Þ0 → Xð3872ÞγÞ · BðXð3872Þ → πþπ−J=ψÞ for each energy point at 90% confidence level, which is of the order of several tenths pb.
Using a sample of (10.09±0.04)×109 J/ψ events collected with the BESIII detector, a partial wave analysis of J/ψ→γη′η′ is performed.The masses and widths of the observed resonances and their branching fractions are reported. The main contribution is from J/ψ→γf0(2020) with f0(2020)→η′η′, which is found with a significance of greater than 25σ. The product branching fraction B(J/ψ → γf0(2020))⋅B(f0(2020) → η′η′ is measured to be (2.63±0.06(stat.) + 0.31−0.46(syst.))×10−4.
The process e+e−→ϕη is studied at 22 center-of-mass energy points (√s) between 2.00 and 3.08 GeV using 715 pb−1 of data collected with the BESIII detector. The measured Born cross section of e+e−→ϕη is found to be consistent with BABAR measurements, but with improved precision. A resonant structure around 2.175 GeV is observed with a significance of 6.9σ with mass (2163.5±6.2±3.0) MeV/c2 and width (31.1+21.1−11.6±1.1) MeV, where the first uncertainties are statistical and the second are systematic.
Relative fractions and phases of the intermediate decays are determined. With the detection efficiency estimated by the results of the amplitude analysis, the branching fraction of Dþ s → K−Kþπþπ0 decay is measured to be ð5.42 0.10stat 0.17systÞ%.