Refine
Year of publication
Language
- English (594)
Has Fulltext
- yes (594)
Is part of the Bibliography
- no (594)
Keywords
- BESIII (20)
- e +-e − Experiments (20)
- Branching fraction (15)
- Particle and Resonance Production (9)
- Charm Physics (6)
- Quarkonium (6)
- Spectroscopy (6)
- Hadronic decays (5)
- QCD (5)
- Branching fractions (4)
Institute
- Physik (592)
- Frankfurt Institute for Advanced Studies (FIAS) (4)
- Informatik (4)
The first amplitude analysis of the decay D+s→K−K+π+π0 is presented using the data samples, corresponding to an integrated luminosity of 6.32 fb−1, collected with the BESIII detector at e+e− center-of-mass energies between 4.178 and 4.226 GeV. More than 3000 events selected with a purity of 97.5\% are used to perform the amplitude analysis, and nine components are found necessary to describe the data. Relative fractions and phases of the intermediate decays are determined. With the detection efficiency estimated by the results of the amplitude analysis, the branching fraction of D+s→K−K+π+π0 decay is measured to be (5.42±0.10stat.±0.17syst.)%.
We present the first amplitude analysis of the decay D+s→K−K+π+π0 using data samples of 6.32 fb−1 recorded with the BESIII detector between 4.178 and 4.226 GeV. More than 3000 events selected with a purity of 97.5\% are used to perform the amplitude analysis, and nine components are found necessary to describe the data. Relative fractions and phases of the intermediate decays are determined. With the detection efficiency determined by the results of the amplitude analysis, we measure the branching fraction of D+s→K−K+π+π0 decay to be (5.42±0.10stat.±0.17syst.)%.
By using 6.32 fb−1 of data collected with the BESIII detector at center-of-mass energies between 4.178 and 4.226 GeV, we perform an amplitude analysis of the decay D+s ! K0S + 0 and determine the relative fractions and phase differences of different intermediate processes, which include K0S (770)+, K0S (1450)+, K (892)0 +, K (892)+ 0, and K (1410)0 +. With the detection efficiency based on the amplitude analysis results, the absolute branching fraction is measured to be B(D+s ! K0S + 0) = (5.43 ± 0.30stat ± 0.15syst) × 10−3.
Using 10.1 × 109 J/ψ events produced by the Beijing Electron Positron Collider (BEPCII) at a center-of-mass energy √s = 3.097 GeV and collected with the BESIII detector, we present a search for the rare semi-leptonic decay J/ψ → D−e+νe + c.c. No excess of signal above background is observed, and an upper limit on the branching fraction B(J/ψ → D−e +νe + c.c.) < 7.1 × 10−8 is obtained at 90% confidence level. This is an improvement of more than two orders of magnitude over the previous best limit.
Though immensely successful, the standard model of particle physics does not offer any explanation as to why our Universe contains so much more matter than antimatter. A key to a dynamically generated matter–antimatter asymmetry is the existence of processes that violate the combined charge conjugation and parity (CP) symmetry1. As such, precision tests of CP symmetry may be used to search for physics beyond the standard model. However, hadrons decay through an interplay of strong and weak processes, quantified in terms of relative phases between the amplitudes. Although previous experiments constructed CP observables that depend on both strong and weak phases, we present an approach where sequential two-body decays of entangled multi-strange baryon–antibaryon pairs provide a separation between these phases. Our method, exploiting spin entanglement between the double-strange Ξ− baryon and its antiparticle2 Ξ¯+
, has enabled a direct determination of the weak-phase difference, (ξP − ξS) = (1.2 ± 3.4 ± 0.8) × 10−2 rad. Furthermore, three independent CP observables can be constructed from our measured parameters. The precision in the estimated parameters for a given data sample size is several orders of magnitude greater than achieved with previous methods3. Finally, we provide an independent measurement of the recently debated Λ decay parameter αΛ (refs. 4,5). The ΛΛ¯
asymmetry is in agreement with and compatible in precision to the most precise previous measurement.
Based on an e+e− collision data sample corresponding to an integrated luminosity of 2.93 fb−1 collected with the BESIII detector at √s=3.773 GeV, the first amplitude analysis of the singly Cabibbo-suppressed decay D+→K+K0Sπ0 is performed. From the amplitude analysis, the K∗(892)+K0S component is found to be dominant with a fraction of (57.1±2.6±4.2)%, where the first uncertainty is statistical and the second systematic. In combination with the absolute branching fraction B(D+→K+K0Sπ0) measured by BESIII, we obtain B(D+→K∗(892)+K0S)=(8.69±0.40±0.64±0.51)×10−3, where the third uncertainty is due to the branching fraction B(D+→K+K0Sπ0). The precision of this result is significantly improved compared to the previous measurement. This result also differs from most of theoretical predictions by about 4σ, which may help to improve the understanding of the dynamics behind.
The process e+e−→ϕη is studied at 22 center-of-mass energy points (√s) between 2.00 and 3.08 GeV using 715 pb−1 of data collected with the BESIII detector. The measured Born cross section of e+e−→ϕη is found to be consistent with BABAR measurements, but with improved precision. A resonant structure around 2.175 GeV is observed with a significance of 6.9σ with mass (2163.5±6.2±3.0) MeV/c2 and width (31.1+21.1−11.6±1.1) MeV, where the first uncertainties are statistical and the second are systematic.
By analyzing an e+e− annihilation data sample corresponding to an integrated luminosity of 2.93 fb−1 collected at a center-of-mass energy of 3.773 GeV with the BESIII detector, we measure the branching fraction of the D0→ρ−μ+νμ decay for the first time. We obtain BD0→ρ−μ+νμ=(1.35±0.09stat±0.09syst)×10−3. Using the world average of BD0→ρ−e+νe, we find a branching fraction ratio of BD0→ρ−μ+νμ/BD0→ρ−e+νe=0.90±0.11, which agrees with the theoretical expectation of lepton flavor universality within the uncertainty. Combining the world average of BD+→ρ0μ+νμ and the lifetimes of D0(+), we obtain a partial decay width ratio of ΓD0→ρ−μ+νμ/(2ΓD+→ρ0μ+νμ)=0.71±0.14, which is consistent with the isospin symmetry expectation of one within 2.1σ. For the reported values of BD0→ρ−μ+νμ/BD0→ρ−e+νe and ΓD0→ρ−μ+νμ/2ΓD+→ρ0μ+νμ, the uncertainty is the quadratic sum of the statistical and systematic uncertainties.
Search for the reaction channel e⁺e⁻ → ηcηπ⁺π⁻ at center-of-mass energies from 4.23 to 4.60 GeV
(2021)
Using data collected with the BESIII detector operating at the Beijing Electron Positron Collider, we search for the process 𝑒+𝑒−→𝜂𝑐𝜂𝜋+𝜋−. The search is performed using five large datasets recorded at center-of-mass energies of 4.23, 4.26, 4.36, 4.42, and 4.60 GeV. The 𝜂𝑐 meson is reconstructed in 16 exclusive decay modes. No signal is observed in the 𝜂𝑐 mass region at any center-of-mass energy. The upper limits on the reaction cross sections are determined to be 6.2, 10.8, 27.6, 22.6 and 23.7 pb at the 90% confidence level at the center-of-mass energies listed above.
We measure the inclusive semielectronic decay branching fraction of the D+s meson. A double-tag technique is applied to e+e− annihilation data collected by the BESIII experiment at the BEPCII collider, operating in the center-of-mass energy range 4.178–4.230 GeV. We select positrons fromD+s→Xe+νe with momenta greater than 200 MeV/c and determine the laboratory momentum spectrum, accounting for the effects of detector efficiency and resolution. The total positron yield and semielectronic branching fraction are determined by extrapolating this spectrum below the momentum cutoff. We measure the D+s semielectronic branching fraction to be(6.30±0.13(stat.)±0.09(syst.)±0.04(ext.))%, showing no evidence for unobserved exclusive semielectronic modes. We combine this result with external data taken from literature to determine the ratio of the D+s and D0 semielectronic widths, Γ(D+s→Xe+νe)Γ(D0→Xe+νe)=0.790±0.016(stat.)±0.011(syst.)±0.016(ext.). Our results are consistent with and more precise than previous measurements.