Refine
Year of publication
Document Type
- Article (340)
- Preprint (246)
- Working Paper (1)
Language
- English (587)
Has Fulltext
- yes (587)
Is part of the Bibliography
- no (587)
Keywords
- BESIII (20)
- e +-e − Experiments (20)
- Branching fraction (15)
- Particle and Resonance Production (9)
- Charm Physics (6)
- Quarkonium (6)
- Spectroscopy (6)
- Hadronic decays (5)
- QCD (5)
- Branching fractions (4)
We study the electromagnetic Dalitz decay 𝐽/𝜓→𝑒+𝑒−𝜂 and search for dielectron decays of a dark gauge boson (𝛾′) in 𝐽/𝜓→𝛾′𝜂 with the two 𝜂 decay modes 𝜂→𝛾𝛾 and 𝜂→𝜋+𝜋−𝜋0 using (1310.6±7.0)×106 𝐽/𝜓 events collected with the BESIII detector. The branching fraction of 𝐽/𝜓→𝑒+𝑒−𝜂 is measured to be (1.43±0.04(stat)±0.06(syst))×10−5, with a precision that is improved by a factor of 1.5 over the previous BESIII measurement. The corresponding dielectron invariant mass dependent modulus square of the transition form factor is explored for the first time, and the pole mass is determined to be Λ=2.84±0.11(stat)±0.08(syst) GeV/𝑐2. We find no evidence of 𝛾′ production and set 90% confidence level upper limits on the product branching fraction ℬ(𝐽/𝜓→𝛾′𝜂)×ℬ(𝛾′→𝑒+𝑒−) as well as the kinetic mixing strength between the standard model photon and 𝛾′ in the mass range of 0.01≤𝑚𝛾′≤2.4 GeV/𝑐2.
We report new measurements of the cross sections for the production of Dbar D final states at the ψ(3770) resonance. Our data sample consists of an integrated luminosity of 2.93 fb−1 of e+e− annihilation data produced by the BEPCII collider and collected and analyzed with the BESIII detector. We exclusively reconstruct three D0 and six D+ hadronic decay modes and use the ratio of the yield of fully reconstructed Dbar D events ("double tags") to the yield of all reconstructed D or bar D mesons ("single tags") to determine the number of D0bar D0 and D+D− events, benefiting from the cancellation of many systematic uncertainties. Combining these yields with an independent determination of the integrated luminosity of the data sample, we find the cross sections to be σ(e+e− → D0bar D0) nb and σ(e+e− → D+D−) = (2.830 ± 0.011 ± 0.026) nb, where the uncertainties are statistical and systematic, respectively.
We report on new measurements of Cabibbo-suppressed semileptonic D+s decays using 3.19 fb−1 of e+e− annihilation data sample collected at a center-of-mass energy of 4.178~GeV with the BESIII detector at the BEPCII collider. Our results include branching fractions B(D+s→K0e+νe)=(3.25±0.38(stat.)±0.16(syst.))×10−3 and B(D+s→K∗0e+νe)=(2.37±0.26(stat.)±0.20(syst.))×10−3 which are much improved relative to previous measurements, and the first measurements of the hadronic form-factor parameters for these decays. For D+s→K0e+νe, we obtain f+(0)=0.720±0.084(stat.)±0.013(syst.), and for D+s→K∗0e+νe, we find form-factor ratios rV=V(0)/A1(0)=1.67±0.34(stat.)±0.16(syst.) and r2=A2(0)/A1(0)=0.77±0.28(stat.)±0.07(syst.).
Using a data sample of 448.1×106 𝜓(3686) events collected at √𝑠=3.686 GeV with the BESIII detector at the Beijing Electron-Positron Collider II, we search for the rare decay 𝐽/𝜓→𝜙𝑒+𝑒− via 𝜓(3686)→𝜋+𝜋−𝐽/𝜓. No signal events are observed and the upper limit on the branching fraction is set to be ℬ(𝐽/𝜓→𝜙𝑒+𝑒−)<1.2×10−7 at the 90% confidence level, which is still about one order of magnitude higher than the Standard Model prediction.
he process e+e−→pK0Sn¯K−+c.c. and its intermediate processes are studied for the first time, using data samples collected with the BESIII detector at BEPCII at center-of-mass energies of 3.773, 4.008, 4.226, 4.258, 4.358, 4.416, and 4.600 GeV, with a total integrated luminosity of 7.4 fb−1. The Born cross section of e+e−→pK0Sn¯K−+c.c. is measured at each center-of-mass energy, but no significant resonant structure in the measured cross-section line shape between 3.773 and 4.600 GeV is observed. No evident structure is detected in the pK−, nK0S, pK0S, nK+, pn¯, or K0SK− invariant mass distributions except for Λ(1520). The Born cross sections of e+e−→Λ(1520)n¯K0S+c.c. and e+e−→Λ(1520)p¯K++c.c. are measured, and the 90\% confidence level upper limits on the Born cross sections of e+e−→Λ(1520)Λ¯(1520) are determined at the seven center-of-mass energies.
Using a data sample of 448.1×106 ψ(3686) events collected at s√= 3.686 GeV with the BESIII detector at the BEPCII, we search for the rare decay J/ψ→ϕe+e− via ψ(3686)→π+π−J/ψ. No signal events are observed and the upper limit on the branching fraction is set to be B(J/ψ→ϕe+e−)<1.2×10−7 at the 90\% confidence level, which is still about one order of magnitude higher than the Standard Model prediction.
Using a low background data sample of 9.7×105 𝐽/𝜓→𝛾𝜂′, 𝜂′→𝛾𝜋+𝜋− events, which are 2 orders of magnitude larger than those from the previous experiments, recorded with the BESIII detector at BEPCII, the decay dynamics of 𝜂′→𝛾𝜋+𝜋− are studied with both model-dependent and model-independent approaches. The contributions of 𝜔 and the 𝜌(770)−𝜔 interference are observed for the first time in the decays 𝜂′→𝛾𝜋+𝜋− in both approaches. Additionally, a contribution from the box anomaly or the 𝜌(1450) resonance is required in the model-dependent approach, while the process specific part of the decay amplitude is determined in the model-independent approach.
Using a 3.19 fb−1 data sample collected at an 𝑒+𝑒− center-of-mass energy of 𝐸cm=4.178 GeV with the BESIII detector, we measure the branching fraction of the leptonic decay 𝐷+𝑠→𝜇+𝜈𝜇 to be ℬ𝐷+𝑠→𝜇+𝜈𝜇=(5.49±0.16stat±0.15syst)×10−3. Combining our branching fraction with the masses of the 𝐷+𝑠 and 𝜇+ and the lifetime of the 𝐷+𝑠, we determine 𝑓𝐷+𝑠|𝑉𝑐𝑠|=246.2±3.6stat±3.5syst MeV. Using the 𝑐→𝑠 quark mixing matrix element |𝑉𝑐𝑠| determined from a global standard model fit, we evaluate the 𝐷+𝑠 decay constant 𝑓𝐷+𝑠=252.9±3.7stat±3.6syst MeV. Alternatively, using the value of 𝑓𝐷+𝑠 calculated by lattice quantum chromodynamics, we find |𝑉𝑐𝑠|=0.985±0.014stat±0.014syst. These values of ℬ𝐷+𝑠→𝜇+𝜈𝜇, 𝑓𝐷+𝑠|𝑉𝑐𝑠|, 𝑓𝐷+𝑠 and |𝑉𝑐𝑠| are each the most precise results to date.
An amplitude analysis of the 𝐾𝑆𝐾𝑆 system produced in radiative 𝐽/𝜓 decays is performed using the (1310.6±7.0)×106 𝐽/𝜓 decays collected by the BESIII detector. Two approaches are presented. A mass-dependent analysis is performed by parametrizing the 𝐾𝑆𝐾𝑆 invariant mass spectrum as a sum of Breit-Wigner line shapes. Additionally, a mass-independent analysis is performed to extract a piecewise function that describes the dynamics of the 𝐾𝑆𝐾𝑆 system while making minimal assumptions about the properties and number of poles in the amplitude. The dominant amplitudes in the mass-dependent analysis include the 𝑓0(1710), 𝑓0(2200), and 𝑓′2(1525). The mass-independent results, which are made available as input for further studies, are consistent with those of the mass-dependent analysis and are useful for a systematic study of hadronic interactions. The branching fraction of radiative 𝐽/𝜓 decays to 𝐾𝑆𝐾𝑆 is measured to be (8.1±0.4)×10−4, where the uncertainty is systematic and the statistical uncertainty is negligible.
Based on an 𝑒+𝑒− collision data sample corresponding to an integrated luminosity of 567 pb−1 taken at the center-of-mass energy of √𝑠=4.6 GeV with the BESIII detector, we measure the absolute branching fraction of the inclusive decay Λ+𝑐→Λ+𝑋 to be ℬ(Λ+𝑐→Λ+𝑋)=(38.2+2.8−2.2±0.9)% using the double-tag method, where 𝑋 refers to any possible final state particles. In addition, we search for direct 𝐶𝑃 violation in the charge asymmetry of this inclusive decay for the first time, and obtain 𝒜𝐶𝑃≡[ℬ(Λ+𝑐→Λ+𝑋)−ℬ(¯Λ−𝑐 → ¯Λ+𝑋)]/[ℬ(Λ+𝑐→Λ+𝑋)+ℬ(¯Λ−𝑐 → ¯Λ+𝑋)]=(2.1+7.0−6.6±1.6)%, a statistically limited result with no evidence of 𝐶𝑃 violation.