Refine
Year of publication
Language
- English (551)
Has Fulltext
- yes (551)
Is part of the Bibliography
- no (551)
Keywords
- BESIII (11)
- e +-e − Experiments (9)
- LHC (8)
- Branching fraction (6)
- Heavy-ion collisions (6)
- Particle and Resonance Production (5)
- ALICE (3)
- ALICE experiment (3)
- Diffraction (3)
- Elastic scattering (3)
Institute
- Physik (440)
- Frankfurt Institute for Advanced Studies (FIAS) (161)
- Informatik (58)
- Medizin (4)
- Biochemie und Chemie (1)
- Georg-Speyer-Haus (1)
- Sonderforschungsbereiche / Forschungskollegs (1)
J/ψ suppression has long been considered a sensitive signature of the formation of the Quark-Gluon Plasma (QGP) in relativistic heavy-ion collisions. In this letter, we present the first measurement of inclusive J/ψ production at mid-rapidity through the dimuon decay channel in Au+Au collisions at √sNN = 200 GeV with the STAR experiment. These measurements became possible after the installation of the Muon Telescope Detector was completed in 2014. The J/ψ yields are measured in a wide transverse momentum (pT) range of 0.15 GeV/c to 12 GeV/c from central to peripheral collisions. They extend the kinematic reach of previous measurements at RHIC with improved precision. In the 0-10% most central collisions, the J/ψ yield is suppressed by a factor of approximately 3 for pT > 5 GeV/c relative to that in p + p collisions scaled by the number of binary nucleon-nucleon collisions. The J/ψ nuclear modification factor displays little dependence on pT in all centrality bins. Model calculations can qualitatively describe the data, providing further evidence for the color-screening effect experienced by J/ψ mesons in the QGP.
We present measurements of the differential cross sections of inclusive J/ψ meson production as a function of transverse momentum (pJ/ψT) using the μ+μ− and e+e− decay channels in proton+proton collisions at center-of-mass energies of 510 and 500 GeV, respectively, recorded by the STAR detector at the Relativistic Heavy Ion Collider. The measurement from the μ+μ− channel is for 0 <pJ/ψT< 9 GeV/c and rapidity range |yJ/ψ|< 0.4, and that from the e+e− channel is for 4 <pJ/ψT< 20 GeV/c and |yJ/ψ|< 1.0. The ψ(2S) to J/ψ ratio is also measured for 4 <pmesonT< 12 GeV/c through the e+e− decay channel. Model calculations, which incorporate different approaches toward the J/ψ production mechanism, are compared with experimental results and show reasonable agreement within uncertainties.
We report on the first measurements of J/ψ production at very low transverse momentum (pT< 0.2 GeV/c) in hadronic Au+Au collisions at √sNN = 200 GeV and U+U collisions at √sNN = 193 GeV. Remarkably, the inferred nuclear modification factor of J/ψ at mid-rapidity in Au+Au (U+U) collisions reaches about 24 (52) for pT< 0.05 GeV/c in the 60-80% collision centrality class. This noteworthy enhancement cannot be explained by hadronic production accompanied by cold and hot medium effects. In addition, the dN/dt distribution of J/ψ for the very low pT range is presented for the first time. The distribution is consistent with that expected from the Au nucleus and shows a hint of interference. Comparison of the measurements to theoretical calculations of coherent production shows that the excess yield can be described reasonably well and reveals a partial disruption of coherent production in semi-central collisions, perhaps due to the violent hadronic interactions. Incorporating theoretical calculations, the results strongly suggest that the dramatic enhancement of J/ψ yield observed at extremely low pT originates from coherent photon-nucleus interactions. In particular, coherently produced J/ψ's in violent hadronic collisions may provide a novel probe of the quark-gluon-plasma.
We report on the first measurements of J/ψ production at very low transverse momentum (pT< 0.2 GeV/c) in hadronic Au+Au collisions at √sNN = 200 GeV and U+U collisions at √sNN = 193 GeV. Remarkably, the inferred nuclear modification factor of J/ψ at mid-rapidity in Au+Au (U+U) collisions reaches about 24 (52) for pT< 0.05 GeV/c in the 60-80% collision centrality class. This noteworthy enhancement cannot be explained by hadronic production accompanied by cold and hot medium effects. In addition, the dN/dt distribution of J/ψ for the very low pT range is presented for the first time. The distribution is consistent with that expected from the Au nucleus and shows a hint of interference. Comparison of the measurements to theoretical calculations of coherent production shows that the excess yield can be described reasonably well and reveals a partial disruption of coherent production in semi-central collisions, perhaps due to the violent hadronic interactions. Incorporating theoretical calculations, the results strongly suggest that the dramatic enhancement of J/ψ yield observed at extremely low pT originates from coherent photon-nucleus interactions. In particular, coherently produced J/ψ's in violent hadronic collisions may provide a novel probe of the quark-gluon-plasma.
Using (2712.4±14.3)×106 ψ(3686) events collected with the BESIII detector operating at the BEPCII collider, we search for the hadronic transition hc→π+π−J/ψ via ψ(3686)→π0hc. No significant signal is observed. We set the most stringent upper limits to date on the branching fractions B(ψ(3686)→π0hc)×B(hc→π+π−J/ψ) and B(hc→π+π−J/ψ) at the 90% confidence level, which are determined to be 6.7×10−7 and 9.4×10−4, respectively.
Search for ηc(2S) → pp̄ and branching fraction measurements of χcJ → pp̄ via ψ(2S) radiative decays
(2024)
Using (27.12±0.14)×108 ψ(2S) events collected by the BESIII detector operating at BEPCII, we search for the decay ηc(2S)→pp¯ via the process ψ(2S)→γηc(2S), and only find a signal with a significance of 1.7σ. The upper limit of the product branching fraction at the 90% confidence level is determined to be B(ψ(2S)→γηc(2S))×B(ηc(2S)→pp¯)<2.4×10−7. The branching fractions of χcJ→pp¯ (J=0,1,2) are also measured to be B(χc0→pp¯)=(2.51±0.02±0.08)×10−4, B(χc1→pp¯)=(8.16±0.09±0.25)×10−4, and B(χc2→pp¯)=(8.33±0.09±0.22)×10−4, where the first uncertainty is statistical and the second systematic.
The process e+e−→K0SK0Sψ(3686) is studied by analyzing e+e− collision data samples collected at eight center-of-mass energies ranging from 4.682 to 4.951 GeV with the BESIII detector operating at the BEPCII collider, corresponding to an integrated luminosity of 4.1 fb−1. Observation of the e+e−→K0SK0Sψ(3686) process is found for the first time with a statistical significance of 6.3σ, and the cross sections at each center-of-mass energy are measured. The ratio of cross sections of e+e−→K0SK0Sψ(3686) relative to e+e−→K+K−ψ(3686) is determined to be σ(e+e−→K0SK0Sψ(3686))σ(e+e−→K+K−ψ(3686))=0.45±0.25, which is consistent with the prediction based on isospin symmetry. The uncertainty includes both statistical and systematic contributions. Additionally, the K0Sψ(3686) invariant mass distribution is found to be consistent with three-body phase space. The significance of a contribution beyond three-body phase space is only 0.8σ.
Using (2712±14) × 106 ψ(2S) events collected with the BESIII detector at the BEPCII collider, we search for the decays ηc(2S)→ωω and ηc(2S)→ωϕ via the process ψ(2S)→γηc(2S). Evidence of ηc(2S)→ωω is found with a statistical significance of 3.2σ. The branching fraction is measured to be B(ηc(2S)→ωω)=(5.65±3.77(stat.)±5.32(syst.))×10−4. No statistically significant signal is observed for the decay ηc(2S)→ωϕ. The upper limit of the branching fraction at the 90\% confidence level is determined to be B(ψ(2S)→γηc(2S),ηc(2S)→ωϕ)<2.24×10−7. We also update the branching fractions of χcJ→ωω and χcJ→ωϕ decays via the ψ(2S)→γχcJ transition. The branching fractions are determined to be B(χc0→ωω)=(10.63±0.11±0.46)×10−4, B(χc1→ωω)=(6.39±0.07±0.29)×10−4, B(χc2→ωω)=(8.50±0.08±0.38)×10−4, B(χc0→ωϕ)=(1.18±0.03±0.05)×10−4, B(χc1→ωϕ)=(2.03±0.15±0.12)×10−5, and B(χc2→ωϕ)=(9.37±1.07±0.59)×10−6, where the first uncertainties are statistical and the second are systematic.