Refine
Language
- English (94)
Has Fulltext
- yes (94)
Is part of the Bibliography
- no (94)
Keywords
- BESIII (5)
- decays (2)
- e +-e − Experiments (2)
- Absolute branching fraction (1)
- Branching fraction (1)
- Branching fractions (1)
- Charm Physics (1)
- Charmed baryon (1)
- Charmed mesons (1)
- Cross section (1)
Institute
- Physik (94)
We report the measurement of the cross sections for e+e−→hadrons at center-of-mass (c.m.) energies from 3.645 to 3.871 GeV. We observe a new resonance R(3810) in the cross sections for the first time, and observe the R(3760) resonance with high significance in the cross sections. The R(3810) has a mass of (3804.5±0.9±0.9) ~MeV/c2, a total width of (5.4±3.5±3.2)~MeV, and an electronic partial width of (19.4±7.4±12.1)~eV. Its significance is 7.7σ. The R(3810) could be interpreted as a hadro-charmonium resonance predicted by Quantum Chromodynamics (QCD). In addition, we measure the mass (3751.9±3.8±2.8) ~MeV/c2, the total width (32.8±5.8±8.7)~MeV, and the electronic partial width (184±75±86)~eV with improved precision for the R(3760). Furthermore, for the R(3780) we measure the mass (3778.7±0.5±0.3) ~MeV/c2 and total width (20.3±0.8±1.7)~MeV with improved precision, and the electronic partial width (265±69±83)~eV. The R(3780) can be interpreted as the 13D1 state of charmonium. Its mass and total width differ significantly from the corresponding fitted values given by the Particle Data Group in 2022 by 7.1 and 3.2 times the uncertainties for ψ(3770), respectively. ψ(3770) has been interpreted as the 13D1 state for 45 years.
Using (2712.4±14.3)×106 ψ(3686) events collected with the BESIII detector operating at the BEPCII collider, we search for the hadronic transition hc→π+π−J/ψ via ψ(3686)→π0hc. No significant signal is observed. We set the most stringent upper limits to date on the branching fractions B(ψ(3686)→π0hc)×B(hc→π+π−J/ψ) and B(hc→π+π−J/ψ) at the 90% confidence level, which are determined to be 6.7×10−7 and 9.4×10−4, respectively.
Using 2.93 fb−1 of 𝑒+𝑒− collision data taken at a center-of-mass energy of 3.773 GeV with the BESIII detector, we report the first measurements of the absolute branching fractions of 14 hadronic 𝐷0(+) decays to exclusive final states with an 𝜂, e.g., 𝐷0→𝐾−𝜋+𝜂, 𝐾0𝑆𝜋0𝜂, 𝐾+𝐾−𝜂, 𝐾0𝑆𝐾0𝑆𝜂, 𝐾−𝜋+𝜋0𝜂, 𝐾0𝑆𝜋+𝜋−𝜂, 𝐾0𝑆𝜋0𝜋0𝜂, and 𝜋+𝜋−𝜋0𝜂; 𝐷+→𝐾0𝑆𝜋+𝜂, 𝐾0𝑆𝐾+𝜂, 𝐾−𝜋+𝜋+𝜂, 𝐾0𝑆𝜋+𝜋0𝜂, 𝜋+𝜋+𝜋−𝜂, and 𝜋+𝜋0𝜋0𝜂. Among these decays, the 𝐷0→𝐾−𝜋+𝜂 and 𝐷+→𝐾0 𝑆𝜋+𝜂 decays have the largest branching fractions, which are ℬ(𝐷0→𝐾−𝜋+𝜂) = (1.853±0.025stat±0.031syst)% and ℬ(𝐷+→𝐾0𝑆𝜋+𝜂) = (1.309±0.037stat±0.031syst)%, respectively. The charge-parity asymmetries for the six decays with highest event yields are determined, and no statistically significant charge-parity violation is found.
Using a 3.19 fb−1 data sample collected at an 𝑒+𝑒− center-of-mass energy of 𝐸cm=4.178 GeV with the BESIII detector, we measure the branching fraction of the leptonic decay 𝐷+𝑠→𝜇+𝜈𝜇 to be ℬ𝐷+𝑠→𝜇+𝜈𝜇=(5.49±0.16stat±0.15syst)×10−3. Combining our branching fraction with the masses of the 𝐷+𝑠 and 𝜇+ and the lifetime of the 𝐷+𝑠, we determine 𝑓𝐷+𝑠|𝑉𝑐𝑠|=246.2±3.6stat±3.5syst MeV. Using the 𝑐→𝑠 quark mixing matrix element |𝑉𝑐𝑠| determined from a global standard model fit, we evaluate the 𝐷+𝑠 decay constant 𝑓𝐷+𝑠=252.9±3.7stat±3.6syst MeV. Alternatively, using the value of 𝑓𝐷+𝑠 calculated by lattice quantum chromodynamics, we find |𝑉𝑐𝑠|=0.985±0.014stat±0.014syst. These values of ℬ𝐷+𝑠→𝜇+𝜈𝜇, 𝑓𝐷+𝑠|𝑉𝑐𝑠|, 𝑓𝐷+𝑠 and |𝑉𝑐𝑠| are each the most precise results to date.
We report the first observation of the semimuonic decay 𝐷+→𝜔𝜇+𝜈𝜇 using an 𝑒+𝑒− collision data sample corresponding to an integrated luminosity of 2.93 fb−1 collected with the BESIII detector at a center-of-mass energy of 3.773 GeV. The absolute branching fraction of the 𝐷+→𝜔𝜇+𝜈𝜇 decay is measured to be ℬ𝐷+→𝜔𝜇+𝜈𝜇=(17.7±1.8stat±1.1syst)×10−4. Its ratio with the world average value of the branching fraction of the 𝐷+→𝜔𝑒+𝜈𝑒 decay probes lepton flavor universality and it is determined to be ℬ𝐷+→𝜔𝜇+𝜈𝜇/ℬPDG 𝐷+→𝜔𝑒+𝜈𝑒=1.05±0.14, in agreement with the standard model expectation within one standard deviation.
Cross sections of the process 𝑒+𝑒−→𝜋0𝜋0𝐽/𝜓 at center-of-mass energies between 3.808 and 4.600 GeV are measured with high precision by using 12.4 fb−1 of data samples collected with the BESIII detector operating at the BEPCII collider facility. A fit to the measured energy-dependent cross sections confirms the existence of the charmoniumlike state 𝑌(4220). The mass and width of the 𝑌(4220) are determined to be (4220.4±2.4±2.3) MeV/𝑐2 and (46.2±4.7±2.1) MeV, respectively, where the first uncertainties are statistical and the second systematic. The mass and width are consistent with those measured in the process 𝑒+𝑒−→𝜋+𝜋−𝐽/𝜓. The neutral charmonium-like state 𝑍𝑐(3900)0 is observed prominently in the 𝜋0𝐽/𝜓 invariant-mass spectrum, and, for the first time, an amplitude analysis is performed to study its properties. The spin-parity of 𝑍𝑐(3900)0 is determined to be 𝐽𝑃=1+, and the pole position is (3893.1±2.2±3.0)−𝑖(22.2±2.6±7.0) MeV/𝑐2, which is consistent with previous studies of electrically charged 𝑍𝑐(3900)±. In addition, cross sections of 𝑒+𝑒− → 𝜋0𝑍𝑐(3900)0 → 𝜋0𝜋0𝐽/𝜓 are extracted, and the corresponding line shape is found to agree with that of the 𝑌(4220).
Using 2.93 fb−1 of 𝑒+𝑒− collision data collected at a center-of-mass energy of 3.773 GeV with the BESIII detector, the first observation of the doubly Cabibbo-suppressed decay 𝐷+→𝐾+𝜋+𝜋−𝜋0 is reported. After removing decays that contain narrow intermediate resonances, including 𝐷+→𝐾+𝜂, 𝐷+→𝐾+𝜔, and 𝐷+→𝐾+𝜙, the branching fraction of the decay 𝐷+→𝐾+𝜋+𝜋−𝜋0 is measured to be (1.13±0.08stat±0.03syst)×10−3. The ratio of branching fractions of 𝐷+→𝐾+𝜋+𝜋−𝜋0 over 𝐷+→𝐾−𝜋+𝜋+𝜋0 is found to be (1.81±0.15)%, which corresponds to (6.28±0.52)tan4𝜃𝐶, where 𝜃𝐶 is the Cabibbo mixing angle. This ratio is significantly larger than the corresponding ratios for other doubly Cabibbo-suppressed decays. The asymmetry of the branching fractions of charge-conjugated decays 𝐷±→𝐾±𝜋±𝜋∓𝜋0 is also determined, and no evidence for 𝐶𝑃 violation is found. In addition, the first evidence for the 𝐷+→𝐾+𝜔 decay, with a statistical significance of 3.3𝜎, is presented and the branching fraction is measured to be ℬ(𝐷+→𝐾+𝜔) = (5.7+2.5−2.1stat±0.2syst)×10−5.
Using a sample of 106 million 𝜓(3686) decays, 𝜓(3686)→𝛾𝜒𝑐𝐽(𝐽=0,1,2) and 𝜓(3686)→𝛾𝜒𝑐𝐽,𝜒𝑐𝐽→𝛾𝐽/𝜓(𝐽=1,2) events are utilized to study inclusive 𝜒𝑐𝐽→anything, 𝜒𝑐𝐽→hadrons, and 𝐽/𝜓→anything distributions, including distributions of the number of charged tracks, electromagnetic calorimeter showers, and 𝜋0s, and to compare them with distributions obtained from the BESIII Monte Carlo simulation. Information from each Monte Carlo simulated decay event is used to construct matrices connecting the detected distributions to the input predetection “produced” distributions. Assuming these matrices also apply to data, they are used to predict the analogous produced distributions of the decay events. Using these, the charged particle multiplicities are compared with results from MARK I. Further, comparison of the distributions of the number of photons in data with those in Monte Carlo simulation indicates that G-parity conservation should be taken into consideration in the simulation.
We report an amplitude analysis and branching fraction measurement of D+s→K+K−π+ decay using a data sample of 3.19 fb−1 recorded with BESIII detector at a center-of-mass energy of 4.178 GeV.
We perform a model-independent partial wave analysis in the low K+K− mass region to determine the K+K− S-wave lineshape, followed by an amplitude analysis of our very pure high-statistics sample.
The amplitude analysis provides an accurate determination of the detection efficiency allowing us to measure the branching fraction B(D+s→K+K−π+)=(5.47±0.08stat±0.13sys)%.