Refine
Document Type
- Article (2)
- Doctoral Thesis (1)
- Preprint (1)
Language
- English (4)
Has Fulltext
- yes (4)
Is part of the Bibliography
- no (4)
Keywords
- Cryoelectron microscopy (1)
- Endosomes (1)
- Membrane lipids (1)
- Phospholipids (1)
- X-ray crystallography (1)
Cryo-electron tomography combined with subtomogram averaging (StA) has yielded high-resolution structures of macromolecules in their native context. However, high-resolution StA is not commonplace due to beam-induced sample drift, images with poor signal-to-noise ratios (SNR), challenges in CTF correction, and limited particle number. Here we address these issues by collecting tilt series with a higher electron dose at the zero-degree tilt. Particles of interest are then located within reconstructed tomograms, processed by conventional StA, and then re-extracted from the high-dose images in 2D. Single particle analysis tools are then applied to refine the 2D particle alignment and generate a reconstruction. Use of our hybrid StA (hStA) workflow improved the resolution for tobacco mosaic virus from 7.2 to 4.4 Å and for the ion channel RyR1 in crowded native membranes from 12.9 to 9.1 Å. These resolution gains make hStA a promising approach for other StA projects aimed at achieving subnanometer resolution.
Cryo electron tomography (cryo-ET) combined with subtomogram averaging (StA) enables structural determination of macromolecules in their native context. A few structures were reported by StA at resolution higher than 4.5 Å, however all of these are from viral structural proteins or vesicle coats. Reaching high resolution for a broader range of samples is uncommon due to beam-induced sample drift, poor signal-to-noise ratio (SNR) of images, challenges in CTF correction, limited number of particles. Here we propose a strategy to address these issues, which consists of a tomographic data collection scheme and a processing workflow. Tilt series are collected with higher electron dose at zero-degree tilt in order to increase SNR. Next, after performing StA conventionally, we extract 2D projections of the particles of interest from the higher SNR images and use the single particle analysis tools to refine the particle alignment and generate a reconstruction. We benchmarked our proposed hybrid StA (hStA) workflow and improved the resolution for tobacco mosaic virus from 7.2 to 5.2 Å and the resolution for the ion channel RyR1 in crowded native membranes from 12.9 to 9.1 Å. We demonstrate that hStA can improve the resolution obtained by conventional StA and promises to be a useful tool for StA projects aiming at subnanometer resolution or higher.
Over the last decade, cryo-EM has developed exponentially due to improvements in both hardware (“machine”-based) and software (“algorithm”-based). These improvements have pushed the best achievable resolutions closer to atomic level, bridging “gaps” not covered by other biophysical techniques, and allowing more difficult biological questions to be addressed. Thus, this PhD project was designed and constructed to apply cryo-EM to answer biological questions, while allowing simultaneous cryo-EM method development.
The biological focus of this research is pentameric ligand-gated ion channels (pLGICs), specifically the serotonin receptor type-3 receptor (5HT3R), which also belongs to the Cys-loop receptor family. 5HT3R plays an important role in fast synaptic signal transduction in response to agonist and antagonist binding. Binding to its native ligand results in opening of the channel at the transmembrane domain, allowing cations to pass through, resulting in membrane depolarization and conversion of the chemical signal into an electrical one.
This work consisted mainly of two specific aims. One was focused on conformational investigation of 5HT3R in its ligand-bound open conformation, using cryo-electron microscopy (cryo-SPA), in order to understand the gating mechanism upon ligand activation. The other one was to combine SPA with cryo-ET and STA to push the resolution limitation of conventional cryo-ET and STA workflows.
In the end, three different cryo-EM conformations of membrane-embedded 5HT3R were resolved using cryo-SPA, two structures in resting closed forms, one C5-symmetric and one C1-asymmetric, and one serotonin-bound open form. These three structures presented a number of novel features related to the transition of the receptor to its ion-conductive state. Specifically, the serotonin-bound receptor shows asymmetric opening, which was speculated to occur via an intermediate asymmetric Apo state. In addition to the cryo-SPA work, application of cryo-ET and STA to the study of 5HT3R in native vesicles is described in this thesis. Additional work on methods development, focused on combining SPA and STA techniques, along with preliminary results on tobacco mosaic virus are also detailed and discussed.
Moreover, previously unreported asymmetric arrangements of the subunits of the homopentameric 5HT3R around the pore axis were revealed. The asymmetric open state is stabilized by phospholipids inserted at the interface between subunits, at a site well-documented for the binding of allosteric pLGIC modulators. These results not only give structural support to a large body of functional data on the effects of lipids on the function of this receptor family, but also provide structural guidance for future studies in this field. Meanwhile, the SPA-STA combined methods developed during the course of this work have the potential to help resolve higher resolution tomography-based structures, which would benefit researchers seeking to do in-situ-based structural studies.
Phosphatidylinositol 3-kinase type 2α (PI3KC2α) is an essential member of the structurally unresolved class II PI3K family with crucial functions in lipid signaling, endocytosis, angiogenesis, viral replication, platelet formation and a role in mitosis. The molecular basis of these activities of PI3KC2α is poorly understood. Here, we report high-resolution crystal structures as well as a 4.4-Å cryogenic-electron microscopic (cryo-EM) structure of PI3KC2α in active and inactive conformations. We unravel a coincident mechanism of lipid-induced activation of PI3KC2α at membranes that involves large-scale repositioning of its Ras-binding and lipid-binding distal Phox-homology and C-C2 domains, and can serve as a model for the entire class II PI3K family. Moreover, we describe a PI3KC2α-specific helical bundle domain that underlies its scaffolding function at the mitotic spindle. Our results advance our understanding of PI3K biology and pave the way for the development of specific inhibitors of class II PI3K function with wide applications in biomedicine.