Refine
Document Type
- Article (4)
Language
- English (4)
Has Fulltext
- yes (4)
Is part of the Bibliography
- no (4)
Keywords
- global jets (2)
- helical magnetic fields (2)
- kink-like instability (2)
- particle-in-cell simulations (2)
- recollimation shocks (2)
- relativistic jets (2)
- AGN host galaxies (1)
- Jets (1)
- Radio continuum emission (1)
- Radio jets (1)
Institute
We present the black hole accretion code (BHAC), a new multidimensional general-relativistic magnetohydrodynamics module for the MPI-AMRVAC framework. BHAC has been designed to solve the equations of ideal general-relativistic magnetohydrodynamics in arbitrary spacetimes and exploits adaptive mesh refinement techniques with an efficient block-based approach. Several spacetimes have already been implemented and tested. We demonstrate the validity of BHAC by means of various one-, two-, and three-dimensional test problems, as well as through a close comparison with the HARM3D code in the case of a torus accreting onto a black hole. The convergence of a turbulent accretion scenario is investigated with several diagnostics and we find accretion rates and horizon-penetrating fluxes to be convergent to within a few percent when the problem is run in three dimensions. Our analysis also involves the study of the corresponding thermal synchrotron emission, which is performed by means of a new general-relativistic radiative transfer code, BHOSS. The resulting synthetic intensity maps of accretion onto black holes are found to be convergent with increasing resolution and are anticipated to play a crucial role in the interpretation of horizon-scale images resulting from upcoming radio observations of the source at the Galactic Center.
In this study, we investigate the interaction of jets with their environment at a microscopic level, which is a key open question in the study of relativistic jets. Using small simulation systems during past research, we initially studied the evolution of both electron–proton and electron–positron relativistic jets containing helical magnetic fields, by focusing on their interactions with an ambient plasma. Here, using larger jet radii, we have performed simulations of global jets containing helical magnetic fields in order to examine how helical magnetic fields affect kinetic instabilities, such as the Weibel instability, the kinetic Kelvin–Helmholtz instability (kKHI) and the mushroom instability (MI). We found that the evolution of global jets strongly depends on the size of the jet radius. For example, phase bunching of jet electrons, in particular in the electron–proton jet, is mixed with a larger jet radius as a result of the more complicated structures of magnetic fields with excited kinetic instabilities. In our simulation, these kinetic instabilities led to new types of instabilities in global jets. In the electron–proton jet simulation, a modified recollimation occurred, and jet electrons were strongly perturbed. In the electron–positron jet simulation, mixed kinetic instabilities occurred early, followed by a turbulence-like structure. Simulations using much larger (and longer) systems are required in order to further thoroughly investigate the evolution of global jets containing helical magnetic fields.
The particle-in-cell (PIC) method was developed to investigate microscopic phenomena, and with the advances in computing power, newly developed codes have been used for several fields, such as astrophysical, magnetospheric, and solar plasmas. PIC applications have grown extensively, with large computing powers available on supercomputers such as Pleiades and Blue Waters in the US. For astrophysical plasma research, PIC methods have been utilized for several topics, such as reconnection, pulsar dynamics, non-relativistic shocks, relativistic shocks, and relativistic jets. PIC simulations of relativistic jets have been reviewed with emphasis placed on the physics involved in the simulations. This review summarizes PIC simulations, starting with the Weibel instability in slab models of jets, and then focuses on global jet evolution in helical magnetic field geometry. In particular, we address kinetic Kelvin-Helmholtz instabilities and mushroom instabilities.
We present the first very long baseline interferometric (VLBI) observations of the blazar OJ 287 carried out jointly with the Global Millimeter VLBI Array (GMVA) and the phased Atacama Large Millimeter/submillimeter Array (ALMA) at 3.5 mm on 2017 April 2. The participation of phased ALMA has not only improved the GMVA north–south resolution by a factor of ∼3, but has also enabled fringe detections with signal-to-noise ratios up to 300 at baselines longer than 2 Gλ. The high sensitivity has motivated us to image the data with newly developed regularized maximum likelihood imaging methods, revealing the innermost jet structure with unprecedentedly high angular resolution. Our images reveal a compact and twisted jet extending along the northwest direction, with two bends within the inner 200 μas, resembling a precessing jet in projection. The component at the southeastern end shows a compact morphology and high brightness temperature, and is identified as the VLBI core. An extended jet feature that lies at ∼200 μas northwest of the core shows a conical shape, in both total and linearly polarized intensity, and a bimodal distribution of the linear polarization electric vector position angle. We discuss the nature of this feature by comparing our observations with models and simulations of oblique and recollimation shocks with various magnetic field configurations. Our high-fidelity images also enabled us to search for possible jet features from the secondary supermassive black hole (SMBH) and test the SMBH binary hypothesis proposed for this source.