Refine
Year of publication
Language
- English (703)
Has Fulltext
- yes (703)
Is part of the Bibliography
- no (703)
Keywords
- Heavy Ion Experiments (13)
- Hadron-Hadron Scattering (11)
- Hadron-Hadron scattering (experiments) (6)
- Heavy Quark Production (5)
- Jets (5)
- Collective Flow (4)
- Heavy-ion collisions (4)
- Quark-Gluon Plasma (4)
- Diffraction (3)
- Elastic scattering (3)
Institute
- Frankfurt Institute for Advanced Studies (FIAS) (632)
- Physik (604)
- Informatik (517)
- Informatik und Mathematik (3)
Dihadron angular correlations in d + Au collisions at √sNN = 200 GeV are reported as a function of the measured zero-degree calorimeter neutral energy and the forward charged hadron multiplicity in the Au-beam direction. A finite correlated yield is observed at large relative pseudorapidity (η) on the near side (i.e. relative azimuth φ ∼ 0). This correlated yield as a function of η appears to scale with the dominant, primarily jet-related, away-side (φ ∼ π) yield. The Fourier coefficients of the φ correlation, Vn = (cosnφ), have a strong η dependence. In addition, it is found that V1 is approximately inversely proportional to the mid-rapidity event multiplicity, while V2 is independent of it with similar magnitude in the forward (d-going) and backward (Au-going) directions.
Effect of event selection on jetlike correlation measurement in d+Au collisions at √sNN = 200 GeV
(2015)
Dihadron correlations are analyzed in √sNN = 200 GeV d + Au collisions classified by forward charged particle multiplicity and zero-degree neutral energy in the Au-beam direction. It is found that the jetlike correlated yield increases with the event multiplicity. After taking into account this dependence, the non-jet contribution on the away side is minimal, leaving little room for a back-to-back ridge in these collisions.
The acceptance-corrected dielectron excess mass spectra, where the known hadronic sources have been subtracted from the inclusive dielectron mass spectra, are reported for the first time at mid-rapidity |yee|<1 in minimum-bias Au+Au collisions at sNN−−−−√ = 19.6 and 200 GeV. The excess mass spectra are consistently described by a model calculation with a broadened ρ spectral function for Mee<1.1 GeV/c2. The integrated dielectron excess yield at sNN−−−−√ = 19.6 GeV for 0.4<Mee<0.75 GeV/c2, normalized to the charged particle multiplicity at mid-rapidity, has a value similar to that in In+In collisions at sNN−−−−√ = 17.3 GeV. For sNN−−−−√ = 200 GeV, the normalized excess yield in central collisions is higher than that at sNN−−−−√ = 17.3 GeV and increases from peripheral to central collisions. These measurements indicate that the lifetime of the hot, dense medium created in central Au+Au collisions at sNN−−−−√ = 200 GeV is longer than those in peripheral collisions and at lower energies.
Di-hadron correlations with identified leading hadrons in 200 GeV Au+Au and d+Au collisions at STAR
(2015)
The STAR collaboration presents for the first time two-dimensional di-hadron correlations with identified leading hadrons in 200 GeV central Au+Au and minimum-bias d+Au collisions to explore hadronization mechanisms in the quark gluon plasma. The enhancement of the jet-like yield for leading pions in Au+Au data with respect to the d+Au reference and the absence of such an enhancement for leading non-pions (protons and kaons) are discussed within the context of a quark recombination scenario. The correlated yield at large angles, specifically in the \emph{ridge region}, is found to be significantly higher for leading non-pions than pions. The consistencies of the constituent quark scaling, azimuthal harmonic model and a mini-jet modification model description of the data are tested, providing further constraints on hadronization.
We report results on an elastic cross section measurement in proton–proton collisions at a center-of-mass energy √𝑠 = 510 GeV, obtained with the Roman Pot setup of the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The elastic differential cross section is measured in the four-momentum transfer squared range 0.23 ≤ −𝑡 ≤ 0.67 GeV2. This is the only measurement of the proton-proton elastic cross section in this 𝑡 range for collision energies above the Intersecting Storage Rings (ISR) and below the Large Hadron Collider (LHC) colliders. We find that a constant slope 𝐵 does not fit the data in the aforementioned 𝑡 range, and we obtain a much better fit using a second-order polynomial for 𝐵(𝑡). This is the first measurement below the LHC energies for which the non-constant behavior 𝐵(𝑡) is observed. The 𝑡 dependence of 𝐵 is also determined using six subintervals of 𝑡 in the STAR measured 𝑡 range, and is in good agreement with the phenomenological models. The measured elastic differential cross section d𝜎∕dt agrees well with the results obtained at √𝑠 = 540 GeV for proton–antiproton collisions by the UA4 experiment. We also determine that the integrated elastic cross section within the STAR 𝑡-range is 𝜎f id el = 462.1 ± 0.9(stat.) ± 1.1(syst.) ± 11.6(scale) 𝜇b.
Measurement of inclusive charged-particle jet production in Au + Au collisions at √sNN=200 GeV
(2020)
The STAR Collaboration at the Relativistic Heavy Ion Collider reports the first measurement of inclusive jet production in peripheral and central Au+Au collisions at √𝑠𝑁𝑁=200 GeV. Jets are reconstructed with the anti-𝑘𝑇 algorithm using charged tracks with pseudorapidity |𝜂|<1.0 and transverse momentum 0.2<𝑝ch
𝑇,jet<30 GeV/𝑐, with jet resolution parameter 𝑅=0.2, 0.3, and 0.4. The large background yield uncorrelated with the jet signal is observed to be dominated by statistical phase space, consistent with a previous coincidence measurement. This background is suppressed by requiring a high-transverse-momentum (high-𝑝𝑇) leading hadron in accepted jet candidates. The bias imposed by this requirement is assessed, and the 𝑝𝑇 region in which the bias is small is identified. Inclusive charged-particle jet distributions are reported in peripheral and central Au+Au collisions for 5<𝑝ch
𝑇,jet<25 GeV/𝑐 and 5<𝑝ch
𝑇,jet<30 GeV/𝑐, respectively. The charged-particle jet inclusive yield is suppressed for central Au+Au collisions, compared to both the peripheral Au+Au yield from this measurement and to the 𝑝𝑝 yield calculated using the PYTHIA event generator. The magnitude of the suppression is consistent with that of inclusive hadron production at high 𝑝𝑇 and that of semi-inclusive recoil jet yield when expressed in terms of energy loss due to medium-induced energy transport. Comparison of inclusive charged-particle jet yields for different values of 𝑅 exhibits no significant evidence for medium-induced broadening of the transverse jet profile for 𝑅 <0.4 in central Au+Au collisions. The measured distributions are consistent with theoretical model calculations that incorporate jet quenching.
Elliptic flow of heavy-flavor decay electrons in Au+Au collisions at √sNN = 27 and 54.4 GeV at RHIC
(2023)
We report on new measurements of elliptic flow (v2) of electrons from heavy-flavor hadron decays at mid-rapidity (|y|<0.8) in Au+Au collisions at sNN−−−√ = 27 and 54.4 GeV from the STAR experiment. Heavy-flavor decay electrons (eHF) in Au+Au collisions at sNN−−−√ = 54.4 GeV exhibit a non-zero v2 in the transverse momentum (pT) region of pT< 2 GeV/c with the magnitude comparable to that at sNN−−−√=200 GeV. The measured eHF v2 at 54.4 GeV is also consistent with the expectation of their parent charm hadron v2 following number-of-constituent-quark scaling as other light and strange flavor hadrons at this energy. These suggest that charm quarks gain significant collectivity through the evolution of the QCD medium and may reach local thermal equilibrium in Au+Au collisions at sNN−−−√=54.4 GeV. The measured eHF v2 in Au+Au collisions at sNN−−−√= 27 GeV is consistent with zero within large uncertainties. The energy dependence of v2 for different flavor particles (π,ϕ,D0/eHF) shows an indication of quark mass hierarchy in reaching thermalization in high-energy nuclear collisions.
We present measurements of the differential cross sections of inclusive J/ψ meson production as a function of transverse momentum (pJ/ψT) using the μ+μ− and e+e− decay channels in proton+proton collisions at center-of-mass energies of 510 and 500 GeV, respectively, recorded by the STAR detector at the Relativistic Heavy Ion Collider. The measurement from the μ+μ− channel is for 0 <pJ/ψT< 9 GeV/c and rapidity range |yJ/ψ|< 0.4, and that from the e+e− channel is for 4 <pJ/ψT< 20 GeV/c and |yJ/ψ|< 1.0. The ψ(2S) to J/ψ ratio is also measured for 4 <pmesonT< 12 GeV/c through the e+e− decay channel. Model calculations, which incorporate different approaches toward the J/ψ production mechanism, are compared with experimental results and show reasonable agreement within uncertainties.
We report on the measurement of the Central Exclusive Production of charged particle pairs h+h− (h = π, K, p) with the STAR detector at RHIC in proton-proton collisions at √s = 200 GeV. The charged particle pairs produced in the reaction pp → p′ + h+h− + p′ are reconstructed from the tracks in the central detector and identified using the specific energy loss and the time of flight method, while the forward-scattered protons are measured in the Roman Pot system. Exclusivity of the event is guaranteed by requiring the transverse momentum balance of all four final-state particles. Differential cross sections are measured as functions of observables related to the central hadronic final state and to the forward-scattered protons. They are measured in a fiducial region corresponding to the acceptance of the STAR detector and determined by the central particles’ transverse momenta and pseudorapidities as well as by the forward-scattered protons’ momenta. This fiducial region roughly corresponds to the square of the four-momentum transfers at the proton vertices in the range 0.04 GeV2 < −t1, −t2 < 0.2 GeV2, invariant masses of the charged particle pairs up to a few GeV and pseudorapidities of the centrally-produced hadrons in the range |η| < 0.7. The measured cross sections are compared to phenomenological predictions based on the Double Pomeron Exchange (DPE) model. Structures observed in the mass spectra of π+π− and K+K− pairs are consistent with the DPE model, while angular distributions of pions suggest a dominant spin-0 contribution to π+π− production. For π+π− production, the fiducial cross section is extrapolated to the Lorentz-invariant region, which allows decomposition of the invariant mass spectrum into continuum and resonant contributions. The extrapolated cross section is well described by the continuum production and at least three resonances, the f0(980), f2(1270) and f0(1500), with a possible small contribution from the f0(1370). Fits to the extrapolated differential cross section as a function of t1 and t2 enable extraction of the exponential slope parameters in several bins of the invariant mass of π+π− pairs. These parameters are sensitive to the size of the interaction region.
The linear and mode-coupled contributions to higher-order anisotropic flow are presented for Au+Au collisions at √sN N = 27, 39, 54.4, and 200 GeV and compared to similar measurements for Pb+Pb collisions at the Large Hadron Collider (LHC). The coefficients and the flow harmonics’ correlations, which characterize the linear and mode-coupled response to the lower-order anisotropies, indicate a beam energy dependence consistent with an influence from the specific shear viscosity (η/s). In contrast, the dimensionless coefficients, mode-coupled response coefficients, and normalized symmetric cumulants are approximately beam-energy independent, consistent with a significant role from initialstate effects. These measurements could provide unique supplemental constraints to (i) distinguish between different initial-state models and (ii) delineate the temperature (T ) and baryon chemical potential (μB ) dependence of the specific shear viscosity η s (T ,μB ).