Refine
Language
- English (4)
Has Fulltext
- yes (4)
Is part of the Bibliography
- no (4)
Keywords
- DNA-PAINT (2)
- MET (2)
- single-molecule localization microscopy (2)
- EGFR (1)
- Exchange PAINT (1)
- internalin B (1)
- molecular dynamics (1)
- multiplexing (1)
- neuronal synapse (1)
- receptor cross-interaction (1)
The development of super-resolution microscopy (SRM) has widened our understanding of biomolecular structure and function in biological materials. Imaging multiple targets within a single area would elucidate their spatial localization relative to the cell matrix and neighboring biomolecules, revealing multi-protein macromolecular structures and their functional co-dependencies. SRM methods are, however, limited to the number of suitable fluorophores that can be imaged during a single acquisition as well as the loss of antigens during antibody washing and restaining for organic dye multiplexing. We report the visualization of multiple protein targets within the pre- and postsynapse in 350–400 nm thick neuronal tissue sections using DNA-assisted single-molecule localization microscopy (SMLM). In a single labeling step, antibodies conjugated with short DNA oligonucleotides visualized multiple targets by sequential exchange of fluorophore-labeled complementary oligonucleotides present in the imaging buffer. This approach avoids potential effects on structural integrity when using multiple rounds of immunolabeling and eliminates chromatic aberration, because all targets are imaged using a single excitation laser wavelength. This method proved robust for multi-target imaging in semi-thin tissue sections with a lateral resolution better than 25 nm, paving the way toward structural cell biology with single-molecule SRM.
Receptor tyrosine kinases (RTKs) orchestrate cell motility and differentiation. Deregulated RTKs may promote cancer and are prime targets for specific inhibitors. Increasing evidence indicates that resistance to inhibitor treatment involves receptor cross-interactions circumventing inhibition of one RTK by activating alternative signaling pathways. Here, we used single-molecule super-resolution microscopy to simultaneously visualize single MET and epidermal growth factor receptor (EGFR) clusters in two cancer cell lines, HeLa and BT-20, in fixed and living cells. We found heteromeric receptor clusters of EGFR and MET in both cell types, promoted by ligand activation. Single-protein tracking experiments in living cells revealed that both MET and EGFR respond to their cognate as well as non-cognate ligands by slower diffusion. In summary, for the first time, we present static as well as dynamic evidence of the presence of heteromeric clusters of MET and EGFR on the cell membrane that correlates with the relative surface expression levels of the two receptors
The development of super-resolution microscopy (SRM) has widened our understanding of biomolecular structure and function in biological materials. Imaging multiple targets within a single area would elucidate their spatial localization relative to the cell matrix and neighboring biomolecules, revealing multi-protein macromolecular structures and their functional co-dependencies. SRM methods are, however, limited to the number of suitable fluorophores that can be imaged during a single acquisition as well as the loss of antigens during antibody washing and restaining for organic dye multiplexing. We report the visualization of multiple protein targets within the pre- and postsynapse in 350-400 nm thick neuronal tissue sections using DNA-assisted single-molecule localization microscopy. Using antibodies labeled with short DNA oligonucleotides, multiple targets are visualized successively by sequential exchange of fluorophore-labeled complementary oligonucleotides present in the imaging buffer. The structural integrity of the tissue is maintained owing to only a single labelling step during sample preparation. Multiple targets are imaged using a single laser wavelength, minimizing chromatic aberration. This method proved robust for multi-target imaging in semi-thin tissue sections, paving the way towards structural cell biology with single-molecule super-resolution microscopy.
The human growth factor receptor MET is a receptor tyrosine kinase involved in cell proliferation, migration, and survival. MET is also hijacked by the intracellular pathogen Listeria monocytogenes. Its invasion protein, internalin B (InlB), binds to MET and promotes the formation of a signaling dimer that triggers the internalization of the pathogen. Here, we use a combination of structural biology, modeling, molecular dynamics simulations, and in situ single-molecule Förster resonance energy transfer (smFRET) experiments to elucidate the early events in MET activation by Listeria. Simulations show that InlB binding stabilizes MET in a conformation that promotes dimer formation. smFRET identifies the organization of the in situ signaling dimer. Further MD simulations of the dimer model are in quantitative agreement with smFRET. We accurately describe the structural dynamics underpinning an important cellular event and introduce a powerful methodological pipeline applicable to studying the activation of other plasma membrane receptors.