### Refine

#### Year of publication

- 2019 (2)

#### Document Type

- Working Paper (2)

#### Language

- English (2)

#### Has Fulltext

- yes (2)

#### Is part of the Bibliography

- no (2)

#### Institute

- Informatik (2)

A sound and complete algorithm for nominal unification of higher-order expressions with a recursive let is described, and shown to run in non-deterministic polynomial time. We also explore specializations like nominal letrec-matching for expressions, for DAGs, and for garbage-free expressions and determine their complexity. As extension a nominal unification algorithm for higher-order expressions with recursive let and atom-variables is constructed, where we show that it also runs in non-deterministic polynomial time.

We consider matching, rewriting, critical pairs and the Knuth-Bendix confluence test on rewrite rules in a nominal setting extended by atom-variables. Computing critical pairs is done using nominal unification, and rewriting using nominal matching. We utilise atom-variables to formulate rewrite rules, which is an improvement over previous approaches, using usual nominal unification, nominal matching and nominal equivalence of expressions coupled with a freshness constraint. We determine the complexity of several problems in a quantified freshness logic. In particular we show that nominal matching is Πp2-complete. We prove that the adapted Knuth-Bendix confluence test is applicable to a nominal rewrite system with atom-variabes and thus, that there is a decidable test whether confluence of the ground instance of the abstract rewrite system holds. We apply the nominal Knuth Bendix confluence criterion to the theory of monads, and compute a convergent nominal rewrite system modulo alpha-equivalence.