Refine
Year of publication
- 2016 (1)
Document Type
- Doctoral Thesis (1)
Language
- English (1)
Has Fulltext
- yes (1)
Is part of the Bibliography
- no (1)
Institute
- Mathematik (1)
Random ordinary differential equations (RODEs) are ordinary differential equations (ODEs) which have a stochastic process in their vector field functions. RODEs have been used in a wide range of applications such as biology, medicine, population dynamics and engineering and play an important role in the theory of random dynamical systems, however, they have been long overshadowed by stochastic differential equations.
Typically, the driving stochastic process has at most Hoelder continuous sample paths and the resulting vector field is, thus, at most Hoelder continuous in time, no matter how smooth the vector function is in its original variables, so the sample paths of the solution are certainly continuously differentiable, but their derivatives are at most Hoelder continuous in time. Consequently, although the classical numerical schemes for ODEs can be applied pathwise to RODEs, they do not achieve their traditional orders.
Recently, Gruene and Kloeden derived the explicit averaged Euler scheme by taking the average of the noise within the vector field. In addition, new forms of higher order Taylor-like schemes for RODEs are derived systematically by Jentzen and Kloeden.
However, it is still important to build higher order numerical schemes and computationally less expensive schemes as well as numerically stable schemes and this is the motivation of this thesis. The schemes by Gruene and Kloeden and Jentzen and Kloeden are very general, so RODEs with special structure, i.e., RODEs with Ito noise and RODEs with affine structure, are focused and numerical schemes which exploit these special structures are investigated.
The developed numerical schemes are applied to several mathematical models in biology and medicine. In order to see the performance of the numerical schemes, trajectories of solutions are illustrated. In addition, the error vs. step sizes as well as the computational costs are compared among newly developed schemes and the schemes in literature.