Refine
Document Type
- Article (8)
- Doctoral Thesis (1)
Has Fulltext
- yes (9)
Is part of the Bibliography
- no (9)
Keywords
- Cancer (2)
- caspase-8 (2)
- cell cycle (2)
- 3Cs technology (1)
- Apoptose (1)
- Apoptosis (1)
- CD95/Fas receptor (1)
- Cell Adhesion (1)
- Cell signalling (1)
- Colon cancer (1)
Institute
We have recently shown that caspase-8 is a new substrate of Polo-like kinase 3 (Plk3) that phosphorylates the protein on residue T273 thereby promoting its pro-apoptotic function. In the present study we aimed to investigate the clinical relevance of Plk3 expression and phosphorylation of caspase-8 at T273 in patients with anal squamous cell carcinoma (SSC) treated with 5-fluorouracil and mitomycin C-based chemoradiotherapy (CRT). Immunohistochemical detection of the markers was performed in pretreatment biopsy specimens of 95 patients and was correlated with clinical/histopathologic characteristics including HPV-16 virus load/p16INK4a expression and cumulative incidence of local and distant failure, cancer specific survival (CSS), and overall survival (OS). We observed significant positive correlations between Plk3 expression, pT273 caspase-8 signal, and levels of HPV-16 virus DNA load/p16INK4a detection. Patients with high scores of Plk3 and pT273 caspase-8 showed increased local control (p = 0.011; p = 0.001), increased CSS (p = 0.011; p = 0.013) and OS (p = 0.024; p = 0.001), while the levels of pT273 caspase-8 were significantly associated (p = 0.033) with distant metastases. In multivariate analyses Plk3 expression remained significant for local failure (p = 0.018), CSS (p = 0.016) and OS (p = 0.023). Moreover, a combined HPV16 DNA load and Plk3 or pT273 caspase-8 variable revealed a significant correlation to decreased local failure (p = 0.001; p = 0.009), increased CSS (p = 0.016; p = 0.023) and OS (p = 0.003; p = 0.003). In conclusion these data indicate that elevated levels of Plk3 and pT273 caspase-8 are correlated with favorable clinical outcome in patients with anal SCC treated with concomitant CRT.
Die Zelle repliziert ihre DNA während der S-Phase und segregiert sie dann später in der M Phase des Zellzykluses. Kommt es während dieser Prozesse zu DNA Schädigungen, arretiert die Zelle den Zellzyklus mit Hilfe spezifischer Kontrollmechanismen und versucht den Schaden zu beheben. Der DNA Kontrollpunkt wird bei DNA Schädigungen aktiviert, um mit Hilfe der DNA Reparatur den Schaden zu beheben und somit dafür zu sorgen, dass die DNA fehlerfrei repliziert werden kann. Der zweite Zellzyklus Kontrollpunkt, der Spindel Kontrollpunkt, stellt sicher, dass die Chromosomen während der M Phase unter gleicher Spannung innerhalb der Äquatorialplatte der Metaphase Spindel angeordnet sind. Kann in der Zeit, in der der Zellzyklus Kontrollpunkt aktiv ist, der Schaden nicht behoben werden, so wird Apoptose ausgelöst und die Zelle wird aus dem Zellverband entfernt. Krebszellen haben Strategien entwickelt, Zellzyklus Kontrollpunkte zu umgehen und darüber hinaus normalen Mechanismen der Apoptose zu entkommen. Die genauen molekularen Vorgänge der Deregulierung der Apoptose sind weitestgehend unaufgeklärt. Procaspase 8 ist ein wichtiges Schlüsselenzym des extrinsischen Apoptose Signalweges. Der extrinsische Signalweg wird extrazellulär über die Bindung von Liganden an ihre korrespondierenden Rezeptoren ausgelöst. In dieser Studie wird gezeigt, dass Procaspase 8 an Ser-387 in vitro als auch in vivo von Cdk1/Cyclin B1 phosphoryliert wird. Darüber hinaus zeigt diese Phosphorylierungsstelle die typische Struktur einer Bindungsstelle für Plk1, einer weiteren mitotischen Kinase. Die Interaktion von Procaspase 8 mit Cdk1/Cyclin B1 wird über die DE Domäne („death-effector-domain“ DED) von Procaspase 8 vermittelt. Wird Procaspase 8 an Ser 387 zu Alanin (S387A) mutiert, so wird die Phosphorylierung durch Cdk1/Cyclin B1 fast vollständig verhindert. Wird zudem diese Mutante (S387A) in humanen Krebszellen überexprimiert, so hemmt dies die Apoptose nach Stimulation des Fas Rezeptors. Wird umgekehrt Cyclin B1 mittels RNA Interferenz depletiert und dadurch Cdk1 nicht aktiviert, wird extrinsische Apoptose verstärkt. Diese Studie zeigt erstmals eine gezielte Inhibierung des extrinsischen Apoptose Signalweges durch mitotische Kinasen und schlägt ein Modell vor, in dem Serin/Threonin Kinasen extrinsische Apoptose inhibieren und somit der Tumorzelle ermöglichen, der Apoptose zu entkommen. Darüber hinaus wird ein neuartiger Mechanismus der Inhibition der autokatalytischen Spaltung von Procaspase 8 durch eine mitotische Kinase gezeigt.
Ligand stimulation of CD95 induces activation of Plk3 followed by phosphorylation of caspase-8
(2016)
Upon interaction of the CD95 receptor with its ligand, sequential association of the adaptor molecule FADD (MORT1), pro-forms of caspases-8/10, and the caspase-8/10 regulator c-FLIP leads to the formation of a death-inducing signaling complex. Here, we identify polo-like kinase (Plk) 3 as a new interaction partner of the death receptor CD95. The enzymatic activity of Plk3 increases following interaction of the CD95 receptor with its ligand. Knockout (KO) or knockdown of caspase-8, CD95 or FADD prevents activation of Plk3 upon CD95 stimulation, suggesting a requirement of a functional DISC for Plk3 activation. Furthermore, we identify caspase-8 as a new substrate for Plk3. Phosphorylation occurs on T273 and results in stimulation of caspase-8 proapoptotic function. Stimulation of CD95 in cells expressing a non-phosphorylatable caspase-8-T273A mutant in a rescue experiment or in Plk3-KO cells generated by CRISPR/Cas9 reduces the processing of caspase-8 prominently. Low T273 phosphorylation correlates significantly with low Plk3 expression in a cohort of 95 anal tumor patients. Our data suggest a novel mechanism of kinase activation within the Plk family and propose a new model for the stimulation of the extrinsic death pathway in tumors with high Plk3 expression.
The spindle assembly checkpoint (SAC) acts as a molecular safeguard in ensuring faithful chromosome transmission during mitosis, which is regulated by a complex interplay between phosphatases and kinases including PLK1. Adenomatous polyposis coli (APC) germline mutations cause aneuploidy and are responsible for familial adenomatous polyposis (FAP). Here we study the role of PLK1 in colon cancer cells with chromosomal instability promoted by APC truncation (APC-ΔC). The expression of APC-ΔC in colon cells reduces the accumulation of mitotic cells upon PLK1 inhibition, accelerates mitotic exit and increases the survival of cells with enhanced chromosomal abnormalities. The inhibition of PLK1 in mitotic, APC-∆C-expressing cells reduces the kinetochore levels of Aurora B and hampers the recruitment of SAC component suggesting a compromised mitotic checkpoint. Furthermore, Plk1 inhibition (RNAi, pharmacological compounds) promotes the development of adenomatous polyps in two independent ApcMin/+ mouse models. High PLK1 expression increases the survival of colon cancer patients expressing a truncated APC significantly.
Although essential for T cell function, the identity of the T cell receptor (TCR) “inside-out” pathway for the activation of lymphocyte function-associated antigen 1 (LFA-1) is unclear. SKAP1 (SKAP-55) is the upstream regulator needed for TCR-induced RapL-Rap1 complex formation and LFA-1 activation. In this paper, we show that SKAP1 is needed for RapL binding to membranes in a manner dependent on the PH domain of SKAP1 and the PI3K pathway. A SKAP1 PH domain-inactivating mutation (i.e. R131M) markedly impaired RapL translocation to membranes for Rap1 and LFA-1 binding and the up-regulation of LFA-1-intercellular adhesion molecule 1 (ICAM-1) binding. Further, N-terminal myr-tagged SKAP1 for membrane binding facilitated constitutive RapL membrane and Rap1 binding and effectively substituted for PI3K and TCR ligation in the activation of LFA-1 in T cells.
The taxanes are effective microtubule-stabilizing chemotherapy drugs that inhibit mitosis, induce apoptosis, and produce regression in a fraction of cancers that arise at many sites including the ovary. Novel therapeutic targets that augment taxane effects are needed to improve clinical chemotherapy response in CCNE1-amplified high grade serous ovarian cancer (HGSOC) cells. In this study, we conducted an siRNA-based kinome screen to identify modulators of mitotic progression in CCNE1-amplified HGSOC cells that may influence clinical paclitaxel response. PLK1 is overexpressed in many types of cancer, which correlates with poor prognosis. Here, we identified a novel synthetic lethal interaction of the clinical PLK1 inhibitor BI6727 and the microtubule-targeting drug paclitaxel in HGSOC cell lines with CCNE1-amplification and elucidated the underlying molecular mechanisms of this synergism. BI6727 synergistically induces apoptosis together with paclitaxel in different cell lines including a patient-derived primary ovarian cancer culture. Moreover, the inhibition of PLK1 reduced the paclitaxel-induced neurotoxicity in a neurite outgrowth assay. Mechanistically, the combinatorial treatment with BI6727/paclitaxel triggers mitotic arrest, which initiates mitochondrial apoptosis by inactivation of anti-apoptotic BCL-2 family proteins, followed by significant loss of the mitochondrial membrane potential and activation of caspase-dependent effector pathways. This conclusion is supported by data showing that BI6727/paclitaxel-co-treatment stabilizes FBW7, a component of SCF-type ubiquitin ligases that bind and regulate key modulators of cell division and growth including MCL-1 and Cyclin E. This identification of a novel synthetic lethality of PLK1 inhibitors and a microtubule-stabilizing drug has important implications for developing PLK1 inhibitor-based combination treatments in CCNE1-amplified HGSOC cells.
High attrition rates of novel anti-cancer drugs highlight the need for improved models to predict toxicity. Although polo-like kinase 1 (Plk1) inhibitors are attractive candidates for drug development, the role of Plk1 in primary cells remains widely unexplored. Therefore, we evaluated the utility of an RNA interference-based model to assess responses to an inducible knockdown (iKD) of Plk1 in adult mice. Here we show that Plk1 silencing can be achieved in several organs, although adverse events are rare. We compared responses in Plk1-iKD mice with those in primary cells kept under controlled culture conditions. In contrast to the addiction of many cancer cell lines to the non-oncogene Plk1, the primary cells' proliferation, spindle assembly and apoptosis exhibit only a low dependency on Plk1. Responses to Plk1-depletion, both in cultured primary cells and in our iKD-mouse model, correspond well and thus provide the basis for using validated iKD mice in predicting responses to therapeutic interventions.
RNA interference (RNAi) has emerged as a powerful tool to induce loss-of-function phenotypes by post-transcriptional silencing of gene expression. In this study we wondered whether inducible RNAi-cassettes integrated into cellular DNA possess the power to trigger neoplastic growth. For this purpose inducible RNAi vectors containing tetracycline (Tet)-responsive derivatives of the H1 promoter for the conditional expression of short hairpin RNA (shRNA) were used to target human polo-like kinase 1 (Plk1), which is overexpressed in a broad spectrum of human tumors. In the absence of doxycycline (Dox) HeLa clones expressing TetR, that carry the RNAi-cassette stably integrated, exhibited no significant alteration in Plk1 expression levels. In contrast, exposure to Dox led to marked downregulation of Plk1 mRNA to 3% and Plk1 protein to 14% in cell culture compared to mismatch shRNA/Plk1-expressing cells. As a result of Plk1 depletion cell proliferation decreased to 17%. Furthermore, for harnessing RNAi for silencing disease-related genes in vivo we transplanted inducible RNAi-HeLa cells onto nude mice. After administration of Dox knockdown of Plk1 expression was observed correlating to a significant inhibition of tumor growth. Taken together, our data revealed that genomically integrated RNAi-elements are suitable to hamper tumor growth by conditional expression of shRNA.
Current technologies used to generate CRISPR/Cas gene perturbation reagents are labor intense and require multiple ligation and cloning steps. Furthermore, increasing gRNA sequence diversity negatively affects gRNA distribution, leading to libraries of heterogeneous quality. Here, we present a rapid and cloning-free mutagenesis technology that can efficiently generate covalently-closed-circular-synthesized (3Cs) CRISPR/Cas gRNA reagents and that uncouples sequence diversity from sequence distribution. We demonstrate the fidelity and performance of 3Cs reagents by tailored targeting of all human deubiquitinating enzymes (DUBs) and identify their essentiality for cell fitness. To explore high-content screening, we aimed to generate the largest up-to-date gRNA library that can be used to interrogate the coding and noncoding human genome and simultaneously to identify genes, predicted promoter flanking regions, transcription factors and CTCF binding sites that are linked to doxorubicin resistance. Our 3Cs technology enables fast and robust generation of bias-free gene perturbation libraries with yet unmatched diversities and should be considered an alternative to established technologies.