Refine
Year of publication
Document Type
- Article (341)
- Preprint (252)
- Working Paper (1)
Language
- English (594)
Has Fulltext
- yes (594)
Is part of the Bibliography
- no (594)
Keywords
- BESIII (20)
- e +-e − Experiments (20)
- Branching fraction (15)
- Particle and Resonance Production (9)
- Charm Physics (6)
- Quarkonium (6)
- Spectroscopy (6)
- Hadronic decays (5)
- QCD (5)
- Branching fractions (4)
Institute
Using data samples collected with the BESIII detector operating at the BEPCII storage ring, the cross section of the inclusive process e+e−→η+X, normalized by the total cross section of e+e−→hadrons, is measured at eight center-of-mass energy points from 2.0000 GeV to 3.6710 GeV. These are the first measurements with momentum dependence in this energy region. Our measurement shows a significant discrepancy from calculations with the existing fragmentation functions. To address this discrepancy, a new QCD analysis is performed at the next-to-next-to-leading order with hadron mass corrections and higher twist effects, which can explain both the established high-energy data and our measurements reasonably well.
Based on electron positron collision data collected with the BESIII detector operating at the BEPCII storage rings, the differential cross sections of inclusive π0 and K0S production as a function of hadron momentum, normalized by the total cross section of the e+e−→ hadrons process, are measured at six center-of-mass energies from 2.2324 to 3.6710 GeV. Our results with a relative hadron energy coverage from 0.1 to 0.9 significantly deviate from several theoretical calculations based on existing fragmentation functions, especially at lower energies.
Based on electron positron collision data collected with the BESIII detector operating at the BEPCII storage rings, the differential cross sections of inclusive π0 and K0S production as a function of hadron momentum, normalized by the total cross section of the e+e−→ hadrons process, are measured at six center-of-mass energies from 2.2324 to 3.6710 GeV. Our results with a relative hadron energy coverage from 0.1 to 0.9 significantly deviate from several theoretical calculations based on existing fragmentation functions, especially at lower energies.
The decay $\eta_c(2S)\to\pipieta$ is searched for through the radiative transition ψ(3686)→γηc(2S) using 448 million ψ(3686) events accumulated at the BESIII detector. The first evidence of ηc(2S)→π+π−η is found with a statistical significance of 3.5σ. The product of the branching fractions of ψ(3686)→γηc(2S) and $\eta_c(2S)\to\pipieta$ is measured to be $Br(\psi(3686)\to\gamma\eta_c(2S))\times Br(\eta_c(2S)\to\pipieta)=(2.97\pm0.81\pm0.26)\times10^{-6}$, where the first uncertainty is statistical and the second one is systematic. The branching fraction of the decay $\eta_c(2S)\to\pipieta$ is determined to be $Br(\eta_c(2S)\to\pipieta)=(42.4\pm11.6\pm3.8\pm30.3)\times10^{-4}$, where the third uncertainty is transferred from the uncertainty of the branching fraction of ψ(3686)→γηc(2S).
The decay $\eta_c(2S)\to\pipieta$ is searched for through the radiative transition ψ(3686)→γηc(2S) using 448 million ψ(3686) events accumulated at the BESIII detector. The first evidence of ηc(2S)→π+π−η is found with a statistical significance of 3.5σ. The product of the branching fractions of ψ(3686)→γηc(2S) and $\eta_c(2S)\to\pipieta$ is measured to be $Br(\psi(3686)\to\gamma\eta_c(2S))\times Br(\eta_c(2S)\to\pipieta)=(2.97\pm0.81\pm0.26)\times10^{-6}$, where the first uncertainty is statistical and the second one is systematic. The branching fraction of the decay $\eta_c(2S)\to\pipieta$ is determined to be $Br(\eta_c(2S)\to\pipieta)=(42.4\pm11.6\pm3.8\pm30.3)\times10^{-4}$, where the third uncertainty is transferred from the uncertainty of the branching fraction of ψ(3686)→γηc(2S).
The decay 𝜂𝑐(2𝑆)→𝜋+𝜋−𝜂 is searched for through the radiative transition 𝜓(3686)→𝛾𝜂𝑐(2𝑆) using 448 million 𝜓(3686) events accumulated at the BESIII detector. The first evidence of 𝜂𝑐(2𝑆)→𝜋+𝜋−𝜂 is found with a statistical significance of 3.5𝜎. The product of the branching fractions of 𝜓(3686)→𝛾𝜂𝑐(2𝑆) and 𝜂𝑐(2𝑆)→𝜋+𝜋−𝜂 is measured to be Br(𝜓(3686)→𝛾𝜂𝑐(2𝑆))×Br(𝜂𝑐(2𝑆)→𝜋+𝜋−𝜂)=(2.97±0.81±0.26)×10−6, where the first uncertainty is statistical and the second one is systematic. The branching fraction of the decay 𝜂𝑐(2𝑆)→𝜋+𝜋−𝜂 is determined to be Br(𝜂𝑐(2𝑆)→𝜋+𝜋−𝜂)=(42.4±11.6±3.8±30.3)×10−4, where the third uncertainty is transferred from the uncertainty of the branching fraction of 𝜓(3686)→𝛾𝜂𝑐(2𝑆).
We report a search for a heavier partner of the recently observed Zcs(3985)− state, denoted as Z′−cs, in the process e+e−→K+D∗−sD∗0+c.c., based on e+e− collision data collected at the center-of-mass energies of s√=4.661, 4.682 and 4.699 GeV with the BESIII detector. The Z′−cs is of interest as it is expected to be a candidate for a hidden-charm and open-strange tetraquark. A partial-reconstruction technique is used to isolate K+ recoil-mass spectra, which are probed for a potential contribution from Z′−cs→D∗−sD∗0 (c.c.). We find an excess of Z′−cs→D∗−sD∗0 (c.c.) candidates with a significance of 2.1σ, after considering systematic uncertainties, at a mass of (4123.5±0.7stat.±4.7syst.) MeV/c2. As the data set is limited in size, the upper limits are evaluated at the 90\% confidence level on the product of the Born cross sections (σBorn) and the branching fraction (B) of Z′−cs→D∗−sD∗0, under different assumptions of the Z′−cs mass from 4.120 to 4.140 MeV and of the width from 10 to 50 MeV at the three center-of-mass energies. The upper limits of σBorn⋅B are found to be at the level of O(1) pb at each energy. Larger data samples are needed to confirm the Z′−cs state and clarify its nature in the coming years.
Using electron-positron annihilation data samples corresponding to an integrated luminosity of 4.5 fb−1, collected by the BESIII detector in the energy region between 4600 MeV and 4699 MeV, we report the first observations of the Cabibbo-suppressed decays Λ+c→nπ+π0, Λ+c→nπ+π−π+, and the Cabibbo-favored decay Λ+c→nK−π+π+ with statistical significances of 7.9σ, 7.8σ, and >10σ, respectively. The branching fractions of these decays are measured to be B(Λ+c→nπ+π0)=(0.64±0.09±0.02)%, B(Λ+c→nπ+π−π+)=(0.45±0.07±0.03)%, and B(Λ+c→nK−π+π+)=(1.90±0.08±0.09)%, where the first uncertainties are statistical and the second are systematic. We find that the branching fraction of the decay Λ+c→nπ+π0 is about one order of magnitude higher than that of Λ+c→nπ+.
We report a search for a heavier partner of the recently observed Zcs(3985)− state, denoted as Z′−cs, in the process e+e−→K+D∗−sD∗0+c.c., based on e+e− collision data collected at the center-of-mass energies of s√=4.661, 4.682 and 4.699 GeV with the BESIII detector. The Z′−cs is of interest as it is expected to be a candidate for a hidden-charm and open-strange tetraquark. A partial-reconstruction technique is used to isolate K+ recoil-mass spectra, which are probed for a potential contribution from Z′−cs→D∗−sD∗0 (c.c.). We find an excess of Z′−cs→D∗−sD∗0 (c.c.) candidates with a significance of 2.9σ, after considering systematic uncertainties, at a mass of (4123.5±0.7stat.±1.1syst.)MeV/c2. As the data set is limited in size, the upper limits are evaluated at the 90% confidence level on the product of the Born cross section and the branching fraction of Z′−cs→D∗−sD∗0, σBorn⋅B at the three energy points, under different assumptions of the Z′−cs mass from 4.120 to 4.140 MeV and of the width from 10 to 50 MeV. Under various mass and width assumptions, the upper limits of σBorn⋅B are found to lie in the range of 2∼6, 3∼7 and 3∼6 pb at s√=4.661, 4.682 and 4.699 GeV, respectively. The larger data samples that will be collected in the coming years will allow a clearer picture to emerge concerning the existence and nature of the Z′−cs state.
We report a search for a heavier partner of the recently observed Zcs(3985)− state, denoted as Z′−cs, in the process e+e−→K+D∗−sD∗0+c.c., based on e+e− collision data collected at the center-of-mass energies of s√=4.661, 4.682 and 4.699 GeV with the BESIII detector. The Z′−cs is of interest as it is expected to be a candidate for a hidden-charm and open-strange tetraquark. A partial-reconstruction technique is used to isolate K+ recoil-mass spectra, which are probed for a potential contribution from Z′−cs→D∗−sD∗0 (c.c.). We find an excess of Z′−cs→D∗−sD∗0 (c.c.) candidates with a significance of 2.1σ, after considering systematic uncertainties, at a mass of (4123.5±0.7stat.±4.7syst.) MeV/c2. As the data set is limited in size, the upper limits are evaluated at the 90\% confidence level on the product of the Born cross sections (σBorn) and the branching fraction (B) of Z′−cs→D∗−sD∗0, under different assumptions of the Z′−cs mass from 4.120 to 4.140 MeV and of the width from 10 to 50 MeV at the three center-of-mass energies. The upper limits of σBorn⋅B are found to be at the level of O(1) pb at each energy. Larger data samples are needed to confirm the Z′−cs state and clarify its nature in the coming years.