Refine
Language
- English (180)
Has Fulltext
- yes (180)
Is part of the Bibliography
- no (180)
Keywords
- BESIII (7)
- Branching fraction (7)
- e +-e − Experiments (4)
- Lepton colliders (3)
- Charm Physics (2)
- Charmed mesons (2)
- Electroweak interaction (2)
- Initial state radiation (2)
- Leptonic, semileptonic & radiative decays (2)
- Particle decays (2)
Institute
- Physik (177)
- Frankfurt Institute for Advanced Studies (FIAS) (26)
- Informatik (25)
- Medizin (3)
We study the direct production of the JPC=1++ charmonium state χc1(1P) in electron-positron annihilation by carrying out an energy scan around the mass of the χc1(1P). The data was collected with the BESIII detector at the BEPCII collider. An interference pattern between the signal process e+e−→χc1(1P)→γJ/ψ→γμ+μ− and the background processes e+e−→γISRJ/ψ→γISRμ+μ− and e+e−→γISRμ+μ− is observed by combining all the data samples. The χc1(1P) signal is observed with a significance of 5.1σ. This is the first observation of a C-even state directly produced in e+e− annihilation. The electronic width of the χc1(1P) resonance is determined to be Γee=(0.12+0.13−0.08) eV, which is of the same order of magnitude as theoretical calculations.
We study the direct production of the JPC=1++ charmonium state χc1(1P) in electron-positron annihilation by carrying out an energy scan around the mass of the χc1(1P). The data were collected with the BESIII detector at the BEPCII collider. An interference pattern between the signal process e+e−→χc1(1P)→γJ/ψ→γμ+μ− and the background processes e+e−→γISRJ/ψ→γISRμ+μ− and e+e−→γISRμ+μ− are observed by combining all the data samples. The χc1(1P) signal is observed with a significance of 5.1σ. This is the first observation of a C-even state directly produced in e+e− annihilation. The electronic width of the χc1(1P) resonance is determined to be Γee=(0.12+0.13−0.08) eV, which is of the same order of magnitude as theoretical calculations.
We study the direct production of the JPC=1++ charmonium state χc1(1P) in electron-positron annihilation by carrying out an energy scan around the mass of the χc1(1P). The data were collected with the BESIII detector at the BEPCII collider. An interference pattern between the signal process e+e−→χc1(1P)→γJ/ψ→γμ+μ− and the background processes e+e−→γISRJ/ψ→γISRμ+μ− and e+e−→γISRμ+μ− are observed by combining all the data samples. The χc1(1P) signal is observed with a significance of 5.1σ. This is the first observation of a C-even state directly produced in e+e− annihilation. The electronic width of the χc1(1P) resonance is determined to be Γee=(0.12+0.13−0.08) eV, which is of the same order of magnitude as theoretical calculations.
Using 448 million ψ(2S) events, the spin-singlet P-wave charmonium state hc(11P1) is studied via the ψ(2S)→π0hc decay followed by the hc→γηc transition. The branching fractions are measured to be BInc(ψ(2S)→π0hc)×BTag(hc→γηc)=(4.22+0.27−0.26±0.19)×10−4 , BInc(ψ(2S)→π0hc)=(7.32±0.34±0.41)×10−4, and BTag(hc→γηc)=(57.66+3.62−3.50±0.58)%, where the uncertainties are statistical and systematic, respectively. The hc(11P1) mass and width are determined to be M=(3525.32±0.06±0.15) MeV/c2 and Γ=(0.78+0.27−0.24±0.12) MeV. Using the center of gravity mass of the three χcJ(13PJ) mesons (M(c.o.g.)), the 1P hyperfine mass splitting is estimated to be Δhyp=M(hc)−M(c.o.g.)=(0.03±0.06±0.15) MeV/c2, which is consistent with the expectation that the 1P hyperfine splitting is zero at the lowest-order.
The Born cross section of the process e+e−→ηJ/ψ at a center-of-mass energy s√=3.773 GeV is measured to be (8.89±0.88±0.42) pb, using a data sample collected with the BESIII detector operating at the BEPCII storage ring. The decay ψ(3770)→ηJ/ψ is observed for the first time with a statistical significance of 7.4σ. From a fit to the dressed cross-section line-shape of e+e−→ηJ/ψ from s√=3.773 to 4.600 GeV we obtain the branching fraction of the decay ψ(3770)→ηJ/ψ to be (11.6±6.1±1.0)×10−4 when the ψ(3770) decay amplitude is added coherently to the other contributions, and (7.9±1.0±0.7)×10−4 when it is added incoherently. Here the first uncertainties are statistical and the second are systematic.
Using a data sample collected with the BESIII detector operating at the BEPCII storage ring, the Born cross section of the process 𝑒+𝑒−→𝜂𝐽/𝜓 at a center-of-mass energy √𝑠=3.773 GeV is measured to be (8.88±0.87±0.42) pb. We fit the cross section line shape before correcting for the initial state radiation from √𝑠=3.773 to 4.600 GeV to obtain the branching fraction ℬ(𝜓(3770)→𝜂𝐽/𝜓). We obtain ℬ(𝜓(3770)→𝜂𝐽/𝜓)=(11.3±5.9±1.1)×10−4 when the 𝜓(3770) decay amplitude is added coherently to the other contributions, and (8.7±1.0±0.8)×10−4 when it is added incoherently. Here the quoted uncertainties are statistical and systematic, respectively. In both cases, the statistical significance of 𝜓(3770) resonance is above 7𝜎. This is the first time the decay 𝜓(3770)→𝜂𝐽/𝜓 is observed with a statistical significance greater than 5𝜎.
We measure the inclusive semielectronic decay branching fraction of the D+s meson. A double-tag technique is applied to e+e− annihilation data collected by the BESIII experiment at the BEPCII collider, operating in the center-of-mass energy range 4.178–4.230 GeV. We select positrons fromD+s→Xe+νe with momenta greater than 200 MeV/c and determine the laboratory momentum spectrum, accounting for the effects of detector efficiency and resolution. The total positron yield and semielectronic branching fraction are determined by extrapolating this spectrum below the momentum cutoff. We measure the D+s semielectronic branching fraction to be(6.30±0.13(stat.)±0.09(syst.)±0.04(ext.))%, showing no evidence for unobserved exclusive semielectronic modes. We combine this result with external data taken from literature to determine the ratio of the D+s and D0 semielectronic widths, Γ(D+s→Xe+νe)Γ(D0→Xe+νe)=0.790±0.016(stat.)±0.011(syst.)±0.016(ext.). Our results are consistent with and more precise than previous measurements.
The Born cross sections and effective form factors for process 𝑒+𝑒−→Ξ−¯Ξ+ are measured at eight center-of-mass energies between 2.644 and 3.080 GeV, using a total integrated luminosity of 363.9 pb−1 𝑒+𝑒− collision data collected with the BESIII detector at BEPCII. After performing a fit to the Born cross section of 𝑒+𝑒−→Ξ−¯Ξ+, no significant threshold effect is observed.
The process e+e−→ϕη is studied at 22 center-of-mass energy points (√s) between 2.00 and 3.08 GeV using 715 pb−1 of data collected with the BESIII detector. The measured Born cross section of e+e−→ϕη is found to be consistent with BABAR measurements, but with improved precision. A resonant structure around 2.175 GeV is observed with a significance of 6.9σ with mass (2163.5±6.2±3.0) MeV/c2 and width (31.1+21.1−11.6±1.1) MeV, where the first uncertainties are statistical and the second are systematic.
Though immensely successful, the standard model of particle physics does not offer any explanation as to why our Universe contains so much more matter than antimatter. A key to a dynamically generated matter–antimatter asymmetry is the existence of processes that violate the combined charge conjugation and parity (CP) symmetry1. As such, precision tests of CP symmetry may be used to search for physics beyond the standard model. However, hadrons decay through an interplay of strong and weak processes, quantified in terms of relative phases between the amplitudes. Although previous experiments constructed CP observables that depend on both strong and weak phases, we present an approach where sequential two-body decays of entangled multi-strange baryon–antibaryon pairs provide a separation between these phases. Our method, exploiting spin entanglement between the double-strange Ξ− baryon and its antiparticle2 Ξ¯+
, has enabled a direct determination of the weak-phase difference, (ξP − ξS) = (1.2 ± 3.4 ± 0.8) × 10−2 rad. Furthermore, three independent CP observables can be constructed from our measured parameters. The precision in the estimated parameters for a given data sample size is several orders of magnitude greater than achieved with previous methods3. Finally, we provide an independent measurement of the recently debated Λ decay parameter αΛ (refs. 4,5). The ΛΛ¯
asymmetry is in agreement with and compatible in precision to the most precise previous measurement.